Security Threat Modeling: Are Data Flow Diagrams Enough?

Laurens Sion
laurens.sion@cs.kuleuven.be
imec-DistriNet, KU Leuven

Alexander van den Berghe

alexander.vandenberghe@cs.kuleuven.be

imec-DistriNet, KU Leuven

ABSTRACT

Traditional threat modeling approaches such as Microsoft’s STRIDE
rely on Data Flow Diagrams (DFDs) as the main input. As DFDs are
constructed from only five distinct model element types, these sys-
tem models are deliberately kept simple. While this lowers the bar
for practical adoption, there are a number of significant drawbacks.

In this position paper, we identify and illustrate four key short-
comings of DFD models when used for security threat modeling,
related to the inadequate representation of security concepts, data
elements, abstraction levels, and deployment information. Based on
these shortcomings, we posit the need for a dedicated, integrated
language for threat modeling, and discuss the trade-offs that need
to be made between the ease of adoption and the level of support
for systematic and repeatable threat modeling.

KEYWORDS

security, security by design, data flow diagrams, threat modeling

ACM Reference Format:

Laurens Sion, Koen Yskout, Dimitri Van Landuyt, Alexander van den Berghe,
and Wouter Joosen. 2020. Security Threat Modeling: Are Data Flow Dia-
grams Enough?. In IEEE/ACM 42nd International Conference on Software
Engineering Workshops (ICSEW’20), May 23-29, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3387940.3392221

1 INTRODUCTION

The importance of early and extensive threat analysis to identify
potential security issues before they become impactful and difficult
to counteract cannot be understated. Especially in the context of
mission- or safety-critical systems, a proper and in-depth analy-
sis of cybersecurity threats and risks is an essential step of the
development life cycle. Many threat modeling approaches and tech-
niques have been proposed for performing design-level analyses
of software systems, the most popular approach being STRIDE
threat modeling [6, 10, 14]. STRIDE involves the following steps:
(i) model the system under analysis using a Data Flow Diagram
(DFD), (ii) elicit threats at the level of the modeled elements or
interactions, and (iii) prioritize and document the identified threats.

DFDs find their origins in the area of structured programming
and program analysis [5, 18, 20] and have found wide application in
threat modeling due to their inherent simplicity. The DFD notation

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in IEEE/ACM 42nd
International Conference on Software Engineering Workshops (ICSEW’20), May 23-29,
2020, Seoul, Republic of Korea, https://doi.org/10.1145/3387940.3392221.

Koen Yskout
koen.yskout@cs.kuleuven.be
imec-DistriNet, KU Leuven

Dimitri Van Landuyt
dimitri.vanlanduyt@cs.kuleuven.be
imec-DistriNet, KU Leuven

Wouter Joosen
wouter.joosen@cs.kuleuven.be
imec-DistriNet, KU Leuven

comprises four element types: external entities, data flows, processes,
and data stores. In the context of security threat modeling, a fifth
type is introduced: trust boundaries [6, 14, 19].

Figure 1 illustrates the DFD of a Hospital Information System
(HIS) that continuously synchronizes data obtained from a diverse
set of involved health practitioners (e.g. Physicians contributing to
patient records) with a back-end cloud storage and backup service
(the Health Cloud). DFDs such as this serve the clear purpose of
structuring and naming the involved processes, data stores, and data
flows, and can be obtained in a relatively light-weight and ad-hoc
fashion. Drawing up such a DFD in a quick workshop-style session
is a good way to start threat modeling exercises and find consensus
among stakeholders and other workshop participants about the
scope and high-level structure of the system under analysis.

Despite these eminent benefits, we argue that the use of DFDs
forms a non-trivial roadblock towards more mature threat modeling
approaches. More specifically, DFDs lack expressiveness in terms
of (i) elements that pertain to the security architecture (e.g., explicit
countermeasures), (ii) the involved data types, (iii) making explicit
the dependencies on security properties provided by lower-level
abstraction layer, and (iv) relations to other system aspects, such as
deployment. Relying exclusively on DFDs, the success of a threat
modeling exercise depends strongly on the involvement of stake-
holders with security expertise and threat modeling experience.
These are intangible influences that have a significant impact on
the reproducibility and evolvability of the resulting threat model.

In Section 2, we further detail the above argumentation by sys-
tematically discussing the inherent strengths and weaknesses of
the use of the DFD notation in support of threat modeling. In Sec-
tion 3, we refine our vision towards more mature system modeling
approaches in support of threat modeling, which does not necessar-
ily implies adopting extremely formalized notations, but certainly
entails a departure from the exclusive use of DFDs.

2 DFD STRENGTHS AND WEAKNESSES

The primary purpose of Data Flow Diagrams (DFDs) is to model
how data flows through a system, by specifying which processes
act upon what data, and where this data is stored. While data flows
are an important aspect with security implications, which explains
their appeal in threat modeling [6, 14, 19], the DFD representation
is not specifically tailored towards security. Because of this, there
is a mismatch between what can be modeled in a DFD and the
information that is required during threat modeling. This mismatch
leads to important assumptions being made outside of the models,
which makes the models harder to interpret, reuse, and analyze.


https://doi.org/10.1145/3387940.3392221
https://doi.org/10.1145/3387940.3392221

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

The next subsections will go into detail on the different strengths
and weaknesses of the DFD representation in the context of security
threat modeling and illustrate these with a concrete example.

2.1 Strengths

We identify three strengths of DFDs that underlie their wide adop-
tion: the simplicity of their notation, their ability to manage com-
plexity, and the fact that they are technology-agnostic.

Notation simplicity The original DFD representation con-
sists of only four different element types, each with distinct pur-
poses and visual representations. Indeed, the DeMarco DFD repre-
sentation [5] is even considered to be an example of graphical design
excellence [11]. Consequently, stakeholders can get started with
DFD without requiring extensive background knowledge. Further-
more, the simplicity of DFDs in terms of notation also simplifies the
creation of tool support for creating and maintaining DFDs [10, 15].

In the context of threat modeling, the possible (types of) threats
are typically associated with one or more modeling element types.
For example, in STRIDE, the spoofing threat is associated with pro-
cesses and external entities, whereas the tampering threat is related
to processes, data stores and data flows [14]. The limited number of
element types in a DFD allows a relatively straightforward mapping
between possible threat types and model elements.

Complexity management A system is not immediately de-
signed in the highest amount of detail. Consequently, the used
modeling notation should allow to model a system at various levels
of detail and add new information later on. DFDs support this by
allowing the decomposition of processes into subprocesses, where
the subprocesses and the data flows between them describe the
containing process in a higher level of detail. For example, the
coarse-grained HIS process in Figure 1 can be further refined or de-
composed to represent the data flows between different subsystems
installed in the hospital infrastructure.

This mechanism allows to scope the threat analysis efforts by
conducting the analysis at this level of detail. A more fine-grained
assessment can still be performed later on by further decomposing
the processes into their subprocesses.

Technology-agnostic Due to its focus on how data flows
through a system, DFDs are not tied to a specific technology (e.g.,
some middleware platform) or paradigm (e.g., object-oriented pro-
gramming). It thus suffices for participants in a threat modeling
exercise to know the four modeling elements provided by DFDs and
have no further knowledge of software engineering. Consequently,
this lowers the bar to participate in a threat modeling exercise,
allowing a broad range of stakeholders to be involved.

2.2 Weaknesses

The weaknesses of the DFD notation in the context of security threat
modeling stem from a lack of modeling support for security-relevant
information. We identify four general classes of such information:
security concepts, data model, abstraction levels, and deployment
information. For each of these classes, we provide a description,
a rationale for their importance, a concrete example, the research
challenge associated with it, and references to existing work that
has already (partially) addressed this weakness.

Sion et al.

confirma- health data
1

tion
1 1 health data
' (encrypted)

ExternalService

1
thealth data

:(encryptecl) N\ encrypt; HealthCloud

deCrypt =~ " """ "

CloudKeyMgmt

response
CloudStorage

cache

LocalStorage

1
! 1
! 1
! 1
! 1
____________ ! 1
Hospital !

SQL Résult SQL Query

| e e e m e - - - .- - -------- Fl

Figure 1: Example Data Flow Diagram of a Hospital Infor-
mation System (HIS) that synchronizes health data with a
Health Cloud to enable additional functionality via external
third party services such as patient access via health portals.

Security concepts A model that supports threat modeling
activities should provide an extensive set of security concepts that
are precisely and unambiguously defined. Furthermore, this set of
security concepts should support modeling a wide range of secu-
rity countermeasures, incorporating information on the attacker
assumptions, and trust relations in the system under consideration.

Importance: The lack of precisely defined security concepts can
lead to differences in their interpretation, causing conflicting as-
sumptions and security issues to be overlooked.

Examples: The DFD representation used in threat modeling has
a trust boundary concept with a number of different interpreta-
tions: (i) denoting different levels of trust or privilege in the system;
(ii) representing information or assumptions on the attacker model
(e.g., parts of the system that are assumed to be inaccessible to an ex-
ternal attacker); (iii) expressing deployment information such as, for
example, which resources are running on the same local network.
Figure 1 shows such different usages of trust boundaries. The outer
trust boundaries (Hospital and HealthCloud) convey deployment
information, while the inner trust boundary (CloudStorage) rep-
resents a different privilege level in the system. Furthermore, the
right outer trust boundary (HealthCloud) can denote the location
of the attacker (outside of it), while this may not hold for the left
trust boundary (Hospital).

Research challenge: Identify and precisely define the necessary
security concepts and provide a manner to unambiguously encode
these security concepts in the model.

Existing work: There are already several attempts to encode se-
curity solutions in DFDs [17], extend DFD elements with the effects
of security solutions [4, 10], creating DFD element subtypes with
security effects [10] and formalizing DFDs [8]. Explicitly document-
ing the provided security countermeasures is also a requirement
for attaining higher levels in security maturity models [9, 12].



Security Threat Modeling: Are Data Flow Diagrams Enough?

Data model Another semantic issue with DFDs is the lack of
an explicit data model. While DFDs have a strong focus on how data
flows through the system, the data is only modeled as labels on the
data flows and thus remains described in very ad-hoc manner. This
causes a number of problems for threat modeling: (i) data flows
with a different label could implicitly refer to the same data, or
vice versa; (ii) there is no distinction between data treated as data
and data treated as code; and (iii) there is no support to specify
important security properties such of data such as its sensitivity.

Importance: Data is an important factor in many security as-
sessments, both in confidentiality or integrity, and in performing
appropriate validation when processing external data.

Examples: DFDs only model data flows, not data types them-
selves. One of the most common security issues, despite its age, in
web security is SQL injection [1]. Another similar and more recent
issue is the EFAIL vulnerability [13]. Both these issues result from
the treatment of untrusted data as code [2]. The DFD in Figure 1
shows that: (i) it is not possible to determine whether the health
data from Physician to HIS is the same as from HIS to Health
Cloud; (ii) there is no distinction between data treated as code such
as SQL Query and other data; and (iii) it is not possible to see which
data is sensitive without relying on background knowledge.

Research challenge: Enable modeling the involved data types, as
well as their security properties, as first-class concepts.

Existing work: While the early DFD representations provide sup-
port for an explicit list of in and output parameters [18] or data
dictionaries [5] specifying the data types, there mechanisms are
not used in a threat modeling context.

Abstraction levels While DFDs do support hierarchical de-
composition of specific processes for managing complexity (see
before), they only offer support for a constructing the model of
a system at a single level of abstraction. There is no support for
making explicit the dependencies on lower-level layers that are
required for providing specific security guarantees.

Importance: Many applications rely on security properties pro-
vided or guaranteed by lower-level layers such as a TLS connection
that provided confidentiality, integrity, and authentication of the
communication of a web applications.

Examples: Threats in security threat modeling frameworks, such
as STRIDE, may be triggered by underlying layers that fail to pro-
vide the appropriate security guarantees that higher-level layers
implicitly or explicitly rely on. For example, in Figure 1 the confi-
dentiality and integrity of the health data communicated between
the HIS and Health Cloud is provided by TLS at the communi-
cation layer, and not implemented by the application itself. The
(encrypted) annotation on the flow does not suffice to clarify
this. The abstraction levels also impact the elicitation of the differ-
ent threat types. For example, spoofing the Health Cloud when
communicating with the ExternalService in Figure 1 can be the
result of information disclosure of the API key in the communica-
tion layer below. Another example in Figure 1 is the reliance on the
hardware-backed cloud key management service which is provided
by a lower-level API provided by the cloud service provider.

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

Research challenge: Introduce support for the explicit specifica-
tion of security dependencies on lower-level layers, to prevent such
dependencies as implicit security assumptions.

Existing work: While the importance of precisely modeling sys-
tem properties and behavior is recognized [3], there is only limited
work explicitizing dependencies between abstraction levels [16].

Deployment information DFDs do not provide support for
capturing deployment information, which has important security
implications. While the trust boundaries introduced in DFDs for
security do allow to capture some of the information, they introduce
ambiguity because of other conflicting interpretations (see Security
concepts above) and are thus a suboptimal solution.

Importance: The deployment view provides information on the
physical allocation of processes, which is directly related to the
attacker model and has important security implications related to
input sanitation, access control mechanisms, etc.

Examples: The DFD in Figure 1 lacks explicit deployment infor-
mation and thus provides limited assistance in determining where,
for example, appropriate access control measures should be instanti-
ated. The trust boundaries could be used as guidance, but, due to the
ambiguity in their interpretation, could also lead to wasted effort
in misplacing these countermeasures in unnecessary locations.

Research challenge: Provide support for modeling deployment
information consistent with the other views on the system to ensure
that the relevant deployment information can be taken into account
during threat modeling.

Existing work: The UML [7] provides deployment diagrams to
model the relevant deployment information.

3 DISCUSSION AND OUTLOOK

While DFDs are commonly used as a basis for threat modeling
exercises, their semantics are not sufficiently rich to capture and
express all the information that is relevant for such a security
analysis. One could argue that DFDs, despite this limitation, have
gained traction for threat modeling because they only serve as
a communication vehicle between stakeholders to bootstrap the
activity, but serve no formal role beyond that. But even in that
capacity, there is important security information missing from DFDs
that must be captured in some form. In the best case, it is explicitly
written down in the form as textual assumptions or through ad-hoc
extended DFDs. In the worst case, this information only exists in
the heads of the people who conducted the threat modeling, and is
bound to be inconsistent, misinterpreted, implicit, or forgotten.

As illustrated with the issues outlined above, we claim that the
DFD weaknesses in this context hinder the reproducibility and
evolvability of the threat analysis exercises. A solution lies in an
integrated approach, where all relevant information naturally fits
within the modeling language used to conduct the threat modeling
activity: you can only reason about what you can express.

By capturing this information in the modeling language, threat
modeling would become less dependent on expertise and back-
ground knowledge, which are being replaced by explicitly recorded
information, improving the reproducibility. Furthermore, it be-
comes easier to revisit, update, and evolve existing threat models.



ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

Level of
support
High ¢
o]
o]
{
Low DFD Ease of
Difficult Eas adoption

Figure 2: Illustration of the inherent trade-off involved be-
tween the ease of adoption of a modeling language such as
DFDs (horizontal axis), and its level of support for system-
atic and reproducible threat modeling (vertical axis).

Finally, a modeling language that incorporates this information
opens the door for more advanced tool support that can reduce
the required effort and increase the level of automation (e.g., to
integrate threat modeling in a DevOps context).

Such a modeling language is not readily available, though, as
highlighted by the research challenges in the previous section. Fur-
thermore, Figure 2 shows how a candidate language must balance
two forces in order to become successful: complexity of the lan-
guage which makes adoption more challenging and its support for
systematic and repeatable threat modeling.

First, there is the need for a modeling language that is dedicated
towards security threat modeling, and explicitly supports multiple,
complementary yet consistent views that support performing a
systematic, repeatable, thorough threat modeling exercise. That is,
the language must provide a high ‘level of support’ for threat mod-
eling, a quality which we have argued, due to the aforementioned
weaknesses outlined Section 2.2, DFDs do not sufficiently possess.

The second force is the ‘ease of adoption’ of the modeling lan-
guage. The strengths of DFDs (see Section 2.1), which underlie its
popularity, are counteracted by tailoring and semantically enrich-
ing the modeling language. We believe that providing proper tool
support is an important factor in fostering adoption by, for example,
ensuring integration and consistency among the different views.

It is unlikely that there will be a single, one-size-fits-all modeling
approach that makes the optimal trade-off for every context. Some
systems or application domains may require a more rigid analysis,
fully exploiting the semantic richness and formality of the language.
For other systems, a more informal yet accessible language (akin to

Sion et al.

DFDs used today) would suffice. It is unclear at this point whether a
single language can cover this entire spectrum, or whether multiple
languages are needed. Whatever the outcome regarding this matter
may be, this paper has argued that data flow diagrams are not
enough for systematic and reproducible threat modeling.

ACKNOWLEDGMENTS

This research is partially funded by the Research Fund KU Leuven
and the Flemish Research Programme Cybersecurity.

REFERENCES

[1] 2019. OWASP Top Ten Project. https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project

[2] Ivan Arce, Neil Daswani, Jim Delgrosso, Danny Dhillon, Christoph Kern, Ta-
dayoshi Kohno, Carl Landwehr, Gary Mcgraw, Brook Schoenfield, Margo Seltzer,
Diomidis Spinellis, Izar Tarandach, and Jacob West. 2014. Avoiding the Top 10
Software Security Design Flaws. Technical Report. IEEE Center for Secure Design.

[3] Jason Bau and John C. Mitchell. 2011. Security modeling and analysis. IEEE
Security and Privacy 9, 3 (2011), 18-25. https://doi.org/10.1109/MSP.2011.2

[4] Bernhard J. Berger, Karsten Sohr, and Rainer Koschke. 2016. Automatically
Extracting Threats from Extended Data Flow Diagrams. ESSoS 2016 (LNCS) 9639
(2016), 56-71. https://doi.org/10.1007/978-3-319-30806-7

[5] Tom DeMarco. 1979. Structured Analysis and System Specification. Yourdon Press.

[6] Michael Howard and Steve Lipner. 2006. The Security Development Lifecycle.
Microsoft Press.

[7] ISO/IEC. 2012. ISO/IEC 19505-1:2012 Information technology - Object Management
Group Unified Modeling Language (OMG UML), Infrastructure. Standard 19505-
1:2012(E). ISO/IEC. http://www.omg.org/cgi-bin/doc?formal/2012-05-06.pdf

[8] Atif Aftab Ahmed Jilani, Aamer Nadeem, Tai-Hoon Kim, and Eun-Suk Cho. 2008.
Formal Representations of the Data Flow Diagram: A Survey. In 2008 Advanced
Software Engineering and Its Applications. 153-158. https://doi.org/10.1109/ASEA.
2008.34

[9] Gary McGraw, Sammy Migues, and Jacob West. 2018. BSIMM9Y. Technical Report.

[10] Microsoft Corporation. 2016. Microsoft Threat Modeling Tool 2016.
http://aka.ms/tmt2016.

[11] Daniel L Moody. 2009. The “Physics” of Notations: Toward a Scientific Basis

for Constructing Visual Notations in Software Engineering. IEEE Transactions

on Software Engineering 35, 6 (nov 2009), 756-779. https://doi.org/10.1109/TSE.

2009.67

OWASP. 2017. Software Assurance Maturity Model Version 1.5. Technical Report.

OWASP. 72 pages.

Damian Poddebniak, Christian Dresen, Jens Miiller, Fabian Ising, Sebastian

Schinzel, Simon Friedberger, Juraj Somorovsky, and Jorg Schwenk. 2018. Efail:

Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Channels. In

27th {USENIX] Security Symposium ({USENIX} Security 18). {USENIX} Association,

Baltimore, MD, 549-566. https://www.usenix.org/conference/usenixsecurity18/

presentation/poddebniak

[14] Adam Shostack. 2014. Threat Modeling: Designing for Security. 590 pages.

[15] Laurens Sion, Dimitri Van Landuyt, Koen Yskout, and Wouter Joosen. 2018. Sparta:
Security & privacy architecture through risk-driven threat assessment. In 2018
IEEE International Conference on Software Architecture Companion (ICSA-C). IEEE,
89-92.

[16] Laurens Sion, Koen Yskout, Riccardo Scandariato, and Wouter Joosen. 2017. A
Modular Meta-model for Security Solutions. In Companion to the first International
Conference on the Art, Science and Engineering of Programming. ACM, 16.

[17] Laurens Sion, Koen Yskout, Dimitri Van Landuyt, and Wouter Joosen. 2018.
Solution-aware data flow diagrams for security threat modeling. In Proceedings
of the 33rd Annual ACM Symposium on Applied Computing. ACM, 1425-1432.

[18] W P Stevens, G J Myers, and L L Constantine. 1974. Structured design. IBM
Systems Journal 13, 2 (1974), 115-139. https://doi.org/10.1147/sj.132.0115

[19] Frank Swiderski and Window Snyder. 2004. Threat modeling. Microsoft Press.

[20] Edward Yourdon and Larry Constantine. 1975. Structured Design.

=
&N

(13


https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://doi.org/10.1109/MSP.2011.2
https://doi.org/10.1007/978-3-319-30806-7
http://www.omg.org/cgi-bin/doc?formal/2012-05-06.pdf
https://doi.org/10.1109/ASEA.2008.34
https://doi.org/10.1109/ASEA.2008.34
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
https://doi.org/10.1147/sj.132.0115

	Abstract
	1 Introduction
	2 DFD Strengths and Weaknesses
	2.1 Strengths
	2.2 Weaknesses

	3 Discussion and outlook
	Acknowledgments
	References

