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Abstract—Regulatory efforts such as the General Data Protec-
tion Regulation (GDPR) embody a notion of privacy risk that is
centered around the fundamental rights of data subjects. This
is, however, a fundamentally different notion of privacy risk
than the one commonly used in threat modeling which is largely
agnostic of involved data subjects. This mismatch hampers the
applicability of privacy threat modeling approaches such as
LINDDUN in a Data Protection by Design (DPbD) context.

In this paper, we present a data subject-aware privacy risk
assessment model in specific support of privacy threat modeling
activities. This model allows the threat modeler to draw upon a
more holistic understanding of privacy risk while assessing the
relevance of specific privacy threats to the system under design.
Additionally, we propose a number of improvements to privacy
threat modeling, such as enriching Data Flow Diagram (DFD)
system models with appropriate risk inputs (e.g., information on
data types and involved data subjects). Incorporation of these risk
inputs in DFDs, in combination with a risk estimation approach
using Monte Carlo simulations, leads to a more comprehensive
assessment of privacy risk.

The proposed risk model has been integrated in threat mod-
eling tool prototype and validated in the context of a realistic
eHealth application.

Index Terms—privacy, privacy by design, data protection by
design, GDPR, threat modeling, risk assessment, privacy risk

I. INTRODUCTION

The principle of Privacy by Design (PbD) is increasingly rec-
ognized as paramount for the realization of privacy-preserving
software. Besides the growing awareness of privacy concerns
due to increasingly impactful data breaches, its importance
is also confirmed with the introduction of legislation and
guidelines such as the EU’s General Data Protection Regulation
(GDPR) [1], the OECD Privacy Guideline [2], [3], and the
Generally Accepted Privacy Principles (GAPP) [4], all of which
advocate explicit privacy risk management. The GDPR [1] even
imposes it, as it requires countermeasures proportional to the
risk to the involved data subjects [1, Art. 32]. Hence, privacy
risk assessment becomes an essential part of a comprehensive
privacy engineering approach.

An important class of solutions for system analysis from
a privacy perspective is threat modeling, which entails the
systematic enumeration of misuse and attack vectors and
considering their applicability in the system under design.
Successful implementations of security threat modeling [5]–[8]
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have led to the conception of counterparts for eliciting privacy
threats, the most notable methodology being LINDDUN [9].

It is in the prioritization of the uncovered privacy issues
that threat modeling and privacy risk assessment are mutually
reinforcing approaches. However, privacy is an inherently
contested concept [10]; its risk can be approached from different
perspectives: (i) legal risk involving data protection aspects;
(ii) economic risk focusing on financial losses or reputational
damage; (iii) societal risk in terms of fundamental rights of
citizens or societal notions such as social cohesion; (iv) software
engineering risk with approaches such as threat elicitation
involving notions as attacker capabilities, threat feasibility,
involved assets, countermeasure strengths, and engineering
trade-offs; and so on.

Existing risk assessment methodologies in a privacy en-
gineering context commonly focus on a narrow perspective,
such as asset values, or are confined to a limited high-level
assessment, but lack focus on data subjects. By creating a
detailed risk decomposition, the involved risk factors are made
explicit, leading to a more precise interpretation. Furthermore, a
detailed decomposition provides support for a more fine-grained
calculation of the resulting risk. Finally, retrieving the risk
inputs from engineering models, automation can be supported,
enabling an encompassing risk management approach that
keeps track of the global reduction of privacy risk across
multiple countermeasures and design iterations, allows for
better traceability and auditability.

In this paper we (i) present a privacy risk decomposition
to calculate privacy risk using Monte Carlo simulations,
(ii) parameterize the risk to support different analysis scenarios,
(iii) elaborate on the integration of the risk assessment model
in a threat modeling context, (iv) implement the presented
extensions in a prototype, and (v) apply it on an eHealth
application illustrating its use in risk analysis scenarios.

This paper is structured as follows. Section II provides some
background on privacy threat modeling. Section III presents
the privacy risk assessment model. Section IV introduces the
necessary threat modeling extensions for integrating privacy risk
assessment. Section V validates the extension in a prototype
and on an eHealth application case. Section VI provides a
discussion and Section VII discusses related work. Finally,
Section VIII concludes the paper.
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II. BACKGROUND

This section first provides the necessary background on pri-
vacy threat modeling and then discusses different perspectives
on privacy risk, leading up to the problem statement.

A. Privacy Threat Modeling

Privacy threat modeling methodologies, such as LIND-
DUN [9], [11], represent a class of architecture-level analysis
methods, tools, and techniques that involve systematically
assessing the applicability of known privacy-related issues
(threats types) in the context of a specific system under design.

As shown in the pseudo-code below, the threat elicitation
phase commonly involves four activities: (i) modeling the
system (line 1), (ii) systematically iterating over the model
elements (line 2), (iii) iterating over the known threat types
(line 3), and (iv) based on the applicability of the threat type
to the system element (line 4) and the perceived risk (line 5),
documenting the identified privacy threats (line 6), which are
then to be mitigated in later phases.

1 SystemModel systemModel
2 f o r each sc in systemModel :
3 f o r each t t in ThreatTypes :
4 i f ( t t . a p p l i c a b l e ( sc ) &&
5 Risk ( tt , sc ) > t h r e sh o l d ) :
6 document ( tt , sc )

Such an exhaustive threat elicitation approach is enumera-
tive and therefore suffers from combinatorial explosion—the
amount of threats to consider grows substantially with the
number of system elements and the number of threat types to
consider. In this context, privacy risk assessment is crucial to
ensure the cost-effectiveness and efficiency of threat modeling
approaches in general.

B. Perspectives on Privacy Risk

As explained earlier, privacy risk can be assessed from a
wide range of different perspectives. This section elaborates on
a number of risk perspectives that are relevant in the context
of privacy threat modeling. Many existing risk assessment
approaches focus on either technical failures (e.g., FMEA [12])
or the manifestation of security threats (e.g., FAIR [13],
CORAS [14], security threat risk [15]). In these approaches,
the risk impact depends on the value of business assets or the
level of criticality of technical components or services.

These risk assessment models do not, however, include an
assessment of the potential privacy impacts on data subjects.
The GDPR and other applicable regulations dictate adopting
a risk-based approach, and specifically advocate the execu-
tion of Data Protection Impact Assessments (DPIA), which
fundamentally weigh the privacy impact against data subjects’
fundamental rights. PRIAM [16] provides a much more detailed
view on privacy risk to the data subjects, using privacy harm
trees to assess the risk using the feared events, risk sources,
and weaknesses. Other risk assessment models [17]–[19] focus
on assessing the risk specifically from the point of view of a
single data subject or user.

C. Problem statement

Threat modeling in practice is approached mainly from a
security perspective, and despite many of the similarities be-
tween security and privacy as non-functional concerns, merely
adopting security-centric risk assessment models (focused on
factors such as assets, value, impact, technical feasibility) leads
to an incomplete characterization of privacy risk: more notably,
privacy threat modeling approaches lack awareness of the
impact on the involved data subject types.

Furthermore, existing approaches are coarse-grained and
provide limited support for traceability and repeatability of the
resulting risk values (e.g., to find out the main contributing
factors to a specific risk value). This, however, is essential
for (i) calibration, e.g., to allowing analysis why different
experts may reach different risk values in their assessment,
(ii) strengthening the understanding of privacy risk, i.e. towards
understanding which parameters (system context, type of
attacker, involved data subjects, etc.) actually impact privacy
risk the most visibly in a specific case, but also (iii) auditability
and compliance reasons, i.e. to demonstrate that a suitable risk-
based approach was taken.

III. RISK ASSESSMENT MODEL

This section elaborates on the proposed privacy risk as-
sessment model that extends FAIR [13] with specific privacy
and data subject risk factors. It is decomposed following the
structure from Figure 1 from left to right and top to bottom. By
decomposing privacy risk, the model unifies: (i) data subject
risk by incorporating information on data subjects and types
of their data being processed, (ii) technical risk originating
from the system context and applicable security and privacy
countermeasures, and (iii) the risk from an organizational
perspective by scaling the impact according to the number
data subjects and records involved.

A. Risk

The risk is decomposed into two underlying factors: (i) the
Loss Magnitude, which represents the impact on the data
subject(s); and (ii) the Loss Event Frequency, which represents
the frequency of successful attacks from an adversary. These
factors need to be multiplied to calculate the overall risk.

Risk = LM �LEF

= [LM 1 × LEF 1,LM 2 × LEF 2, . . . ,LM S × LEFS ]

B. Loss Magnitude (LM)

The Loss Magnitude, representing the impact, is decomposed
of the following four factors: (i) Data Type Sensitivity, (ii) Nbr.
of Records, (iii) Data Subject Type, and (iv) Nbr. of Data
Subjects. These factors comprise both the impact derived from
the involved data types as well as the involved data subjects.
Each of these factors are discussed in more detail below. The
loss magnitude can be obtained by multiplying them all together
as follows:

LM i = DTS i ×NRi ×DST i ×NDS i
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Fig. 1. Risk Decomposition
This figure shows the decomposition of how the risk can be calculated for a single system context (sc), a single threat type (tt), a single attacker profile (ap), a
single data subject type (dst), and a single data type (dt). The risk values can be aggregated along these parameters as needed, which, for the total risk, would
lead to:

∑SC ∑TT ∑AP ∑DST ∑DT Risk(sc, tt , ap, dst , dt)

Data Type Sensitivity (DTS) The Data Type Sensitivity
represents the privacy risk inherent to the types of data that
are being processed in the system. To distinguish between data
types of different sensitivity levels, data types can be ordered
on a numerical scale according to their sensitivity. This allows
the risk assessment to factor in the impact of threats involving
sensitive data such as medical information, in contrast to, for
example, contact information such as home addresses.
Number of Records (NR) This factor represents the number
of records of a certain data type for a certain data subject
type. This value can be used for expressing two cases. First, if
multiple records of a data type are being collected or processed,
the risk value can be scaled appropriately with this factor.
Second, if a value of this data type is only present for a
fraction of the data subjects (e.g., only processed for half the
data subjects), a fraction for this factor can be used to scale
the risk value down accordingly.
Data Subject Type (DST) The Data Subject Type is used to
specify the risk inherent to the type of data subject whose data
are being processed. This factor is used to take into account
special cases of vulnerable data subject types such as minors.
Nbr. of Data Subjects (NDS) This factor represents the
number of data subjects of a certain type (i.e. the DST above).
This is a scaling factor, analogous to the number of records,
so the impact can be scaled according to the number of data
subjects involved in the data processing operations.

C. Loss Event Frequency (LEF)

The second factor of the risk is the Loss Event Frequency.
It represents the total frequency of successful attacks by
an adversary. This frequency is obtained by combining the

frequency of attacks (TEF ) with the probability of a successful
attack (V ). For an attacker a, the LEF is calculated as follows:

LEF = V · (RP �TEF )

D. Retention Period (RP)

The Retention Period represents the duration during which
data is stored or processed and present for an adversary to be
potentially exploited. This enables distinguishing between long-
running processing operations that pose a higher risk versus
very short-lived transactions after which the data is no longer
retained. A threat event can only be successful when the data
is available at the time of the attempted attack.

E. Threat Event Frequency (TEF)

The Threat Event Frequency represents the frequency of
attempted attacks by an adversary. These attacks are not
necessarily successful. The threat event frequency is further
decomposed into: (i) the probability of action, representing the
likelihood of an attempted attack, and (ii) the contact frequency,
representing how frequently the adversary comes into contact
with the system. The threat event frequency is obtained by
multiplying these two factors together:

TEF i = PoAi × CF i

Probability of Action (PoA) The Probability of Action is
used to determine the likelihood that an adversary will attempt
to attack users’ privacy. This probability will depend on the
type of adversary (which in turn is based on its incentives,
capabilities, and opportunities). For example, an external remote
adversary could be more likely to attempt attack when coming
into contact with the system, while an insider—an employee,
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for example—may be more or less likely to attempt an attack
depending on the monitoring controls imposed on employees
and possible repercussions when discovered.
Contact Frequency (CF) The Contact Frequency is the
frequency with which an adversary comes into contact with the
system. It again varies between different types of adversaries,
allowing to make the distinction between, for example, external
adversaries, users of the system, or insiders.

F. Vulnerability

The Vulnerability is the probability of a successful attack
(taking into account the possibility of the adversary being
an insider). The vulnerability is calculated as the maximum
of: (i) the countermeasure being defeated (CD), and (ii) the
countermeasure being bypassed (CB):

V = max (CD ,CB)

Countermeasure Defeated (CD) The Countermeasure De-
feated factor is obtained by sampling from both the threat
capability and strength distributions to calculate the fraction
of successful attacks in which the adversary manages to
defeat the countermeasures present. This calculation provides
the probability of a successful attack. A single sample i is
calculated as follows:

CD i = f(TC i,Si) with f(x, y) =

{
1 x ≥ y

0 x < y

Since we need the probability of the adversary defeating the
countermeasure, S samples are aggregated as follows:

CD =

∑S
i=1 CD i

S

Threat Capability (TC) The Threat Capability expresses
the capability of the adversary in being able to defeat the
technical security and privacy countermeasures.
Strength (S) This indicates the strength of a technical
countermeasure in resisting an adversary. The strength of a
countermeasure should be specified on the same scale as the
capability of adversaries. More specifically, a countermeasure
can resist an adversary if its strength is larger than the threat
capability of the adversary (S > TC).
Countermeasure bypassed (CB) This factor indicates
whether the adversary can bypass the measure as an insider,
without needing the threat capability to technically defeat the
measure. While the simplest representation of this factor is
binary (0/1), it could also be represented as a probability of
being able to bypass a countermeasure as insider.

G. Risk Factor Values

In order to facilitate the calculation of the risk for privacy
threats, numeric values are required as inputs in the risk
assessment calculation. Such a requirement raises the issue of
determining the appropriate values, which can be difficult. Our
approach explicitly supports and takes into account uncertainty
about these values. Every numeric value used as an input

for risk assessment is represented as an estimate with four
parameters: the minimum value, the maximum value, the most
probable value, and a confidence level value.

These four values define a modified PERT distribution [20],
a distribution commonly used in risk management for managing
the uncertainty in expert estimates.

By using this distribution, a wide range of values with
differences in certainty can be expressed. For example, in
case only the outer boundaries are known, the minimum and
maximum value can be provided, and the confidence can be
set to zero. This leads to a uniform distribution between the
provided minimum and maximum values. When there is a high
degree of certainty, closer values and high confidence lead to
a distribution with a sharp peak.

H. Parameters

The previous sections elaborated on the individual risk fac-
tors. These factors cannot be determined for the system overall,
as they depend on specific parameters. This section elaborates
on the parameters that provide the necessary information for
determining the factors for a single risk value.

System Context The first parameter that needs to be fixed is
the system context. There can be large local differences in the
system context. A localized risk value needs to take the precise
context (such as local security or privacy countermeasures)
into account. Afterwards, these specific risk values can be
aggregated to obtain the risk for the whole system.

Threat Type Second, is the considered threat type. Different
security or privacy threat types are not always applicable. Both
the local system context and the threat type itself determine
the applicability of a threat. Results can again be aggregated
over all threat types per category or over all types in general.

Attacker Profile Third, the assessment has to be performed
while considering a specific attacker profile to take into account
different attackers with different capabilities. This is also
essential for being able to make the distinction between external
attackers and insiders. The attacker profile-specific risks can
again be aggregated afterwards.

Data Subject Type Fourth, is the type of data subject. The
risk is calculated for a single type of data subject. Again,
multiple risk values can be aggregated to obtain a risk value
for all types of data subjects.

Data Type Finally, the risk is calculated for a single data
type (belonging to one or more data subjects). For invalid (data
type, data subject type) parameter combinations (i.e. the data
type does not belong to that data subject type), the resulting
risk is zero. The risk values can again be aggregated over this
parameter as well.

To obtain a total risk value, the resulting risk values can be
aggregated over the previous five parameters. Other types of
aggregation are also possible. By combining the risk values over
all parameters but the data type, an overview of the data types
and their associated risk can be obtained. Analogous analyses
are possible for the data subject types, attacker profiles, etc.
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IV. IMPACT ON THREAT MODELING

This section elaborates on the enhancements necessary to
support the automated risk assessment in a threat modeling
context, aligning these with the risk analysis parameters
discussed in Section III-H: System Context, Threat Type,
Attacker Profile, Data Subject Type, and Data Type.

A. DFD Model Extensions

The presented risk analysis model relies on a System Context.
This parameter corresponds with the system in PRIAM [16].
For risk assessment in a threat modeling context, the same
DFD system representation [21] used in traditional security and
privacy threat modeling approaches [5], [7], [9], [11] can be
relied upon. However, it does need to be extended with support
for the representation of security and privacy countermeasures
in DFDs [22] so that their effect can be incorporated as well.

B. Threat Types and Attacker Profiles

The threat types are already part of the STRIDE [7], [23]
and LINDDUN [9], [11] threat modeling approaches. They
are similar to the privacy weaknesses in PRIAM [16] (as they
lead to privacy harms), and the vulnerabilities in CORAS [14]
The traditional threat elicitation step already considers every
threat type while iterating over the DFD model elements or
interactions, no additional risk extensions are required.

In addition to the threat types, the risk assessment requires
awareness of attacker profiles. These attacker profiles specify
different types of adversaries against which to protect. They
correspond with the risk sources from PRIAM [16] and the
threats in CORAS [14]. The attacker profiles require additional
inputs as discussed in Section III-G. The Insider property of
an attacker profile is represented as a list of DFD elements for
which the attacker can circumvent the countermeasures.

C. Data Subject Types and Data Types

The presented risk model is tailored for system-specific
privacy threats. For assessing the Loss Magnitude, i.e. the
impact on the involved Data Subjects, integration with a data
protection perspective [24] is required. The data protection
viewpoint [24] includes information on data subject types and
data types, including the sensitivity of data types. By leveraging
the correspondences between the data protection viewpoint and
the DFD model, the relevant information can be extracted and
used in the context of the privacy risk assessment.

While data subjects have no direct representation in
PRIAM [16], they are included as victim in the privacy harm
attributes and as stakeholder (although stakeholders also include
controllers, third parties, etc.). CORAS [14] does not support
data subjects. Personal data is supported in PRIAM [16] as
part of the information gathering phase. It is, however, not
an explicit factor in the risk assessment phase. CORAS [14]
does not support data types, unless they are modeled as assets,
which would still lack a link to the data subjects.
Finally, the threat modeling pseudo-code introduced in Sec-
tion II-A can be extended to include the additional information
from the presented parameters from Section III-H:

Fig. 2. Screenshot of the prototype
This screenshot shows the DFD of the Patient Monitoring System. It illustrates
how a traditional DFD lacks any information on data protection concepts. The
properties pane shows how the extension links the Patient DataSubjectType to
the Sensor External Entity in the diagram. Similar links are present for all
the other elements to capture which data types of which data subjects move
through the system.

1 SystemModel systemModel
2 f o r each sc in systemModel :
3 f o r each t t in ThreatTypes :
4 f o r each ap in A t t a c k e r P r o f i l e s :
5 f o r each dst in DataSubjectTypes :
6 f o r each dt in DataTypes :
7 i f ( t t . a p p l i c a b l e ( sc ) &&
8 Risk ( sc , tt , ap , dst , dt ) > t h r e s h o l d ) :
9 document ( sc , tt , ap , dst , dt )

V. VALIDATION & ILLUSTRATION

First, the prototype implementation of the risk assessment
model is discussed. Next, the prototype implementation is
used to apply the risk assessment on an eHealth application,
followed by a description of potential risk analysis scenarios.

A. Prototype Implementation

To evaluate the feasibility of the presented risk assessment
model, we implemented a proof of concept. Figure 2 shows
a screenshot of the prototype implementation. The prototype
implements: (i) the presented risk assessment model, (ii) the
necessary threat modelling enrichments, and (iii) the integration
with the data protection view [24] by extending previously
developed tool support for security threat modeling [25].

The prototype uses Eclipse Ecore meta-models for repre-
senting the DFD model, threat types, attacker profiles, and the
data protection view. They are extended with the necessary
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TABLE I
EXCERPT OF INDIVIDUAL RISK ASSESSMENT RESULTS ACROSS THE FIVE PARAMETERS

System Context (DFD) Threat Type Attacker Profile Data Subject Type Data Type Risk

storeData Linkability Motivated, limited capability Patient ECG Measurement 4.542
storeData Identifiability Motivated, limited capability Patient Risk level 6.632
storeData Detectability Opportunist Patient Risk level 10.409
patientData Disclosure of Information Opportunist Patient Body temp measurement 3.66
retrieveData Linkability Motivated, capable Patient Risk level 1.084
retrieveData Detectability Disgruntled employee Patient Risk level 0.035
GP Detectability Motivated, capable, organized General Practitioner Credentials 0.423
. . . . . . . . . . . . . . . . . .
. . . (6793 rows omitted) .

For a system with 16 DFD elements, 6 threat types, 5 attacker profiles, 2 data subject types, and 4 data types. These entries can be aggregated across the
different dimensions to gain insights into which parameters are the biggest contributors to the privacy risk.

properties from Section IV. To perform the risk assessment,
these models are queried with patterns. These model query
patterns are defined in VIATRA and support querying concrete
models for: (i) applicable threats, (ii) data subject types,
(iii) data types, and (iv) the mapping from data types to the
DFD elements where they are processed or stored.

B. Application on an eHealth Application

The resulting prototype implementation is used to apply
the risk assessment on a concrete eHealth case. The eHealth
application case is a Patient Monitoring System for monitoring
cardiovascular disease patients. Patients are equipped with
wearable sensors that measure health parameters, such as
body temperature and ECG. Those health parameters are
communicated via a mobile app to the back-end, which will
perform a clinical risk assessment based on the received infor-
mation. The analysis results are subsequently made available
to a general practitioner (GP) via the GP Portal. Figure 2
shows a screenshot of the application prototype with the DFD
of the patient monitoring system. Besides the (visualized)
DFD model, there is a corresponding data protection model
containing the information on the data subject types and the
data types, including links to all the DFD elements where the
corresponding data types are being processed or stored.

Running the privacy assessment on this application case
results in Table I. Each row of this table corresponds with
risk documentation step in line 9 of the pseudo-code in
Section IV. The table provides a very fine-grained view on the
risk associated with each combination of parameters.

Once the data in Table I is calculated, it can be aggregated in
multiple different ways to offer interesting insights into where
high risk is situated and which parameters are the biggest
contributors to such high risk.

Figure 3 provides a visualization of such an analysis activity.
By aggregating the risk per system context (column 1 in Table I)
and data subject type (column 4 in Table I), i.e. by aggregating
for every combination of these two parameters, an overview
is obtained of where the risk is the highest for every (system
context, data subject type)-pair. This aggregated information
can be visualized as a heatmap, by overlaying a 2d density plot
on top of the DFD, making it easily detectable which system

(a) Patient Risk Heatmap

(b) General Practioner Risk Heatmap

Fig. 3. Heatmaps of data subject type risks
The two images illustrate the distribution of risk in the DFD for different data
subject types. The heatmaps are constructed by overlaying a 2d density plot
on top of the DFD. Figure 3a shows the distribution of the patient risk. Note
that the sendData and sendSensorData data flows in this diagram do have a
non-zero risk value, but it is very small. Figure 3b shows the distribution of
risk of the general practioner.
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elements have the highest risk associated with them for each
data subject type. This can assist in prioritizing privacy efforts.

While the heatmaps in Figure 3 visualize the risk aggregates
for the different data subject types, such visualizations could
also be created for any other combination of parameters. This
supports other analyses of the risk distribution for, for example,
different data types, attacker profiles, etc.

VI. DISCUSSION AND FUTURE WORK

This section discusses the implications of the presented
privacy risk assessment model and outlines our future work in
this context. First, Section VI-A outlines approaches towards
accurate estimation and calibration of the individual risk factors.
Then, Section VI-B discusses the extent to which the underlying
assumption of independence of the involved risk factors holds
in a realistic context. Finally, Section VI-C discusses the value
and relation of the present risk model in the context of risk
assessment activities specifically aimed at legal compliance.

A. Estimation and calibration of risk factors

Any risk assessment model that involves estimation of
individual risk factors depends highly on the correctness and
accuracy of these input values. While this is no different in the
proposed privacy risk assessment model, the presented approach
does explicitly take into account uncertainty by representing
input values as estimates to parameterize a distribution from
which to sample. This explicitly supports taking into account
various ranges of input values for the factors.

Furthermore, the numerical values can also be used to rank
elements for a relative ordering. For example, different data
types can have ordered sensitivity values associated with them.
Such assignments could be reused by collecting them in a data
type catalog. These catalogs can contain assignments These
could be provided in a data type catalog, with values assigned
according to, for example, GDPR sensitivity interpretations, to
allow easy reuse across multiple models, or be constructed from
the severity scale from the CNIL PIA knowledge bases [26].

B. Independence of the Risk Factors

As discussed in Section III-H, the current risk assessment
model is rooted upon the assumption that the risk factors are
independent from each other. While such an assumption greatly
simplifies the risk calculation, the reality is, unfortunately, more
complex. Below, we provide some example illustrations of
dependencies between these factors:

ThreatType–AttackerProfile: The capability and attack fre-
quency can vary depending on the considered threat type. An
external adversary may be more likely to attempt a linkability
attack, while an insider may be more likely to identify users
as some countermeasures could be bypassed by this adversary.

ThreatType–DataTypeSensitivity: The impact of a certain
threat type manifesting itself may depend on both the threat
type and the data type sensitivity. For example, the information
disclosure of a certain data type may have a bigger impact (on
the data subject) than a detectability threat. In other cases, the
reverse may be true. For example, the result of a medical test

may be negative (with limited information disclosure impact),
while detecting that this information is in a database of test
results for certain medical condition may have a bigger impact.

AttackerProfile–DataTypeSensitivity: The sensitivity of data
types may vary depending on the adversary. For example,
medical data may be considered more sensitive when the
external adversary is the insurance company compared to, for
example, a doctor at a hospital who is not authorized to look
at other patients’ records.

The independence of the factors reduces the amount of
information that is (and needs to be) available for each factor.
Necessarily, the resulting risk score will be less precise. This
issue can be partially mitigated by choosing the boundaries of
the provided estimates in such a way that the variation (because
of the other factors) is still captured.

The amount of detail in the risk factors involves a neces-
sary trade-off exercise. Each of the risk analysis parameters
(Section III-H) could be moved completely down to every risk
component (Section III). This would, however, require end-
users to enter a prohibitively large amount of information as
all combinations must be considered for every factor.

In future work, we intend to model the causality of these
(and potentially other underlying) factors, to evaluate whether a
different and independent set of risk factors can be constructed
to improve the precision of the risk assessment without
sacrificing usability in the number of required inputs.

C. Compliance Checks

The current privacy risk decomposition is very suitable for
the risk assessment of the ‘hard privacy’ threats in LINDDUN
(i.e. LINDD); it is much less suitable for assessing the risk of
the ‘soft privacy’ threats (Non-compliance or Unawareness) as
these require very different types of inputs.

For example, assessing the non-compliance risk closely
aligns to Data Protection Impact Assessment (DPIA) exercises.
Given the integration of the engineering view (Section IV-A)
with a data protection view (Section IV-C) [24], the information
in that view on data subjects and data types can be leveraged
for conducting compliance assessment activities. Repeating
such assessment activities for every part of the system enables
a localized non-compliance risk assessment.

VII. RELATED WORK

Beckers [27] compared multiple privacy requirements engi-
neering approaches. None of the considered approaches support
the notion of risk. Risk is, however, explicitly required by
privacy regulations such as the GDPR [1].

Heckle and Holden’s [28] findings suggest that neither
privacy impact assessments (PIAs) nor classic risk analysis
models are sufficient for privacy risk assessment in the
context of voting systems. Abu-Nimeh and Mead [29] propose
combining them by the IRS PIA [30] in Security Quality
Requirements Engineering (SQUARE) [31]. While such a
PIA [30] supports a detailed assessment of the realization
of privacy-by-policy in the framework of Spiekermann and
Cranor [32] given its focus on assessing compliance with
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privacy principles, a set of questions may not be the best
approach. Alshammari and Simpson [33] make the case for a
model-based approach for privacy compliance checking. The
incorporated data protection view [24] supports such a model-
based compliance assessment. Furthermore, its integration in
the risk assessment provides support for assessing the risk of
privacy threats such as identifiability and linkability, supporting
the realization of privacy-by-architecture [32].

PRIAM [16] provides a very detailed description of informa-
tion that needs to be collected for the privacy risk assessment.
The risk assessment itself requires the construction of harm
trees, in which the risk is assessed with the combination of
privacy weaknesses and risk sources for feared events which
can lead to the harm at the top of the tree. Our approach can
be considered a kind of instantiation of this approach, but
explicitly requires the assignment of numerical estimates for
the risk factors. By requiring such numerical assignments, a
completely automated assessment can be performed.

Hong et al. [34] presented a privacy risk model specifically
developed for ubiquitous computing systems, focusing on the
selective disclosure of personal information (personal privacy).
Similar as the IRS PIA [30], a set of questions is used for the
privacy risk analysis, after which the risks are prioritized.

VIII. CONCLUSION

In this paper, we presented a privacy risk assessment model
that is firmly embedded in a privacy threat modeling context. It
thus assumes a software construction point of view yet involves
extensive analysis of the privacy implications imposed on data
subjects. As such, the privacy risk assessment model allows
for a more comprehensive, systematic, and data subject-aware
privacy threat assessment. By enriching elicited privacy threats
with risk analysis information, privacy engineering efforts can
be prioritized and appropriate countermeasures, in line with
the risk posed to data subjects, can be determined.

The focus on data subjects and ensuing privacy risk im-
plications is essential to align threat modeling activities with
compliance requirements imposed by regulations such as the
GDPR. Explicit breakdown of the overall risk involved in a data
processing effort allows for a more fine-grained risk assessment,
sensitivity analysis of the impact of various parameters on the
resulting privacy risk, follow-up and management of overall
privacy risk, not only at development or system construction
time, but also in the context of system operation and evolution.
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