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Abstract—Security decisions are an important part of software
architecture design, and thus deserve to be explicitly represented
in the design documentation. While UML is the best-known lan-
guage for creating such documentation, it lacks security specific
notations, which makes it difficult to represent the effect of the
security decisions. Several security extensions for UML exist in
the literature, but they represent security concerns at a lower
level of abstraction, or only support a limited subset of security
concerns. We propose a new notation, MASC, to model security
concerns at the architectural level. It has been designed as an
extension of UML, and is based on recurring security concepts
that have been distilled from well-known security principles,
goals, and patterns. By using our notation, a designer obtains
a technique to express security concerns more explicitly in the
architectural design documentation.

Index Terms—security, software architecture, notation, UML,
MASC

I. INTRODUCTION

The paper of Perry and Wolf [1] forms the starting point for
the research on software architectures in 1992. Software archi-
tectures are required because of the higher form of abstraction
necessary when dealing with larger and more complex soft-
ware systems [2]. Because of the size and complexity of these
systems, the architecting process produces and consumes a lot
of knowledge [3], resulting in a shifting view to documenting
not only the end result, but also the underlying rationale [3].

However, examining the different strategies for achieving
security in software architectures, such as security patterns and
the underlying security concepts and techniques they apply,
reveals that an explicit manner to express security knowledge
at this level of abstraction is missing. This makes it difficult to
express and convey the security decisions and properties of a
software architecture to other software architects, designers, or
programmers. Nevertheless, there are several reasons why such
an explicit representation for this information is necessary:
(a) it allows for documentation of decisions and security
information for future use; (b) it provides guidelines during
the future development of the system, determining the actual
implementation of the system; and (c) it can form a base for
analysis, review, and compliance testing.

Our goal is to enable a software architect to represent
the important security aspects of the design explicitly in the
architectural documentation. Therefore, the contribution of this
paper is twofold. First, we have compiled a list of important
security-related concepts at the architectural level. We distilled
this list from common security concepts and techniques, goals,

and their usage in published security patterns. Second, we
propose a new notation, Modelling Architectural Security
Concerns (MASC), which is an extension of UML, dedicated
to represent these concepts in a more explicit manner. Tool
support for the notation has been developed as a prototype.

II. SECURITY DESIGN CONCEPTS

MASC is based on a list of security design concepts. To con-
struct this list, we start from two security information sources:
(1) well-known and often-used security concepts or techniques
(e.g., compartmentalization, least privilege, etc.) from Saltzer
and Schroeder [4], and Viega and McGraw [5]; and (2) security
goals and objectives from Viega and McGraw [5], Pfleeger and
Pfleeger [6], Firesmith [7], and Hernan et al. [8].

As illustrated in Fig. 1, these two sources are first examined
with the purpose of creating an initial concept list. Using this
list, we then perform an in-depth study of an elaborate set of
security patterns (36 patterns from different sources [9]–[17]).
For each pattern, we record the concepts that are used, and
for which purpose. Usage can be explicit (i.e., mentioned in
the pattern description), or implicit (i.e., the concept is used,
but not explicitly mentioned in the pattern description). For
example, an AuthenticationEnforcer intercepts requests, but its
description does not use the term ‘interception’. Concepts that
are important for the pattern but not yet in the list are added.
This results in an extended list of security design concepts,
together with the number of security patterns that use them.

Finally, because significant overlap among the resulting
concepts exists, the concepts are grouped and merged (right-
side of Fig. 1), which produces the final list as shown in
Table I. The table contains the name of each identified concept,
a short description, and the number of patterns that uses it.
This list is used as the foundation for constructing MASC.

During the composition of the concept list, the need for a
dedicated, security-oriented notation quickly became apparent.

Initial List

Security Concepts &
Techniques [4], [5]

Security Goals
[5]–[8]

Extended
List Final List

Security Patterns
[9]–[17]

Merging and
grouping

Fig. 1. Construction of the concept list.
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Fig. 2. A part of the initial architecture of the Patient Monitoring System. The security concerns are expressed in plain UML using custom stereotypes.

TABLE I
SECURITY CONCEPT LIST, BASED ON COMMON CONCEPTS, TECHNIQUES,

GOALS, AND SECURITY PATTERNS

Concept Pattern Count

1 Interception 18
Intercepting requests to read, modify, or block them.

2 Policies 18
Apply security policies, for example to make behaviour dependent
on the user’s role.

3 Complete mediation 17
Guard all access to an entity that needs protection.

4 Credentials 14
Require the use of credentials or session identifiers.

5 Cryptography 6
Usage of encryption, signatures, hash functions, and their keys.

6 Distribution* 6
Distribute requests or calculations to redundant entities.

7 Centralization* 8
Centralize functionality to prevent duplication.

8 Standardization* 4
Use standardized, published, and tested algorithms.

*: no explicit notation in MASC

Many security patterns lack a visual representation of the
security concepts they contain, and only provide a textual
description of the technique. If a visual representation is
included, it is often cumbersome to understand or incomplete.

III. THE MASC NOTATION

MASC supports the top five concepts from Table I. The
three concepts at the bottom of Table I are not explicitly
represented in MASC for multiple reasons. They are less
widely used by the patterns, and not entirely security specific.
Furthermore, distribution can already be expressed in UML
using multiplicities, while centralization and standardization
are principles that are not easily expressed graphically.

Two concepts, namely interception and complete mediation,
depend on a more invasive extension of UML, and will be

discussed in-depth in subsections III-B and III-C. The other
concepts are more lightweight, as they are based on icons that
are added to UML diagrams. They will be discussed together,
and more briefly, in III-D. Due to space constraints, we cannot
discuss all aspects of MASC in depth. For more details about
the notation and our prototype implementation, we refer the
reader to [18].

A. Description of the example

Throughout this section, we will illustrate the application
of MASC with an example architecture (Fig. 2). The example
is part of a patient monitoring system (PMS), designed to
monitor patients remotely by collecting data from sensors they
wear on their body. The system has two entry points for user
interaction: one for personnel of the hospital (Hospital-
UsersFacade), the other one for patients, general practi-
tioners, and researchers (OtherUsersFacade).

Users can log in to the system via these facades. After
authenticating, they can retrieve patient status information, risk
assessments based on the collected sensor data, and other pa-
tient information (depending on their privileges). The process-
ing of the requests and retrieval of the data from the databases
is performed by handler components (e.g., PatientData-
Handler and ResearchQueryHandler).

The architecture in Fig. 2 uses stereotypes to include
security-relevant information, for example «credential» and
«session» in the context of authentication.

B. Interception

Interception is a common and frequently used concept in
security, as illustrated by the number of patterns in Table I-1.
In order to represent it in plain UML, interfaces need to be
duplicated, as FilterQueries does for the Research-
Query interface at the right-hand side of Fig. 2. Additionally,
the diagram does not contain any information on the type of
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TABLE II
OVERVIEW OF SECURITY GOAL (SUB)CATEGORIES

Abbrev. Category Subcategory

AC:An Access Control Authentication
AC:Az Authorization
AHD Attack and Harm Detection
NR Non-Repudiation
I Integrity
C Confidentiality
Av Availability
Av:R Recovery

Fig. 3. The interception notation applied.

interception (e.g., reading, modifying, blocking) that can be
performed by the component.

Fig. 3 illustrates the application of the interception notation
in MASC for this part of the architecture. An intercepted
interface is represented using a stretched interface symbol.
To indicate the purpose of the interception, the symbol can
include the desired security goal, for example from the list in
Table II. Intercepting components are connected vertically to
the intercepted interface. Furthermore, the type of each inter-
ception connection is indicated using an arrow, whose meaning
is explained in Table III. For example, the Filter component
in Fig. 3 can read, modify, or block sensitive replies from the
ResearchQueryHandler component, while the AuthN-
Handler can block (unauthenticated) queries.

Representing interception in this way is still ambiguous
when multiple intercepting components are present, because
the exact order in which they handle the requests cannot be
derived. Therefore, the UML sequence diagram notation is
also extended with a notation for interception, as shown in
Fig. 4. In the example, requests and replies are again inter-
cepted between the OtherUsersFacade (OUF) and the
ResearchQueryHandler (RQH). Empty lifelines separate
the intercepting component(s) from the rest. When a request
from the client is intercepted, it goes to the intercepting
component, which can process it, after which it is forwarded to
the destination component. The dashed horizontal line in the
center indicates the moment the request is forwarded. Note
that a message from left to right below this line corresponds
to the ‘Post’ arrow annotation. The structure for intercepting

Fig. 4. Interception sequence diagram example.

TABLE III
TYPES OF INTERCEPTION ARROWS AND THEIR MEANINGS

Arrow Meaning

Reading requests

Modifying requests (implies reading)

Blocking requests (implies reading)

Modifying/blocking requests (implies reading)

Asynchronously read a request after it has been passed
on (not allowed for modification or blocking)

Reading replies. All the above apply to replies as well.

The interceptor can initiate a reply itself, instead of
processing an existing one. (Drawn under the connector.)

replies is analogous to that for intercepting requests, but occurs
in the other direction.

The main benefit of our notation is that it allows the
visualization of interception in the architecture, including the
type and goal of interception, without the need for replicating
interfaces as in plain UML. A possible caveat is the reliance on
the directions of the arrows to convey meaning. Changing the
orientation or placement of components might lead to different
interpretations of the arrows. This requires some diligence
when using the notation.

C. Complete Mediation

A second very common security technique is complete me-
diation (see Table I-3). A straightforward way to represent this
concept in UML is with «guard» and «protected» stereotypes
on components and interfaces respectively, as illustrated at the
left-hand side of Fig. 2. This is similar to the approach taken
in UMLsec [19]. While this allows the inclusion of some of
the information, there is no clear indication of which protected
interfaces require which guards, or whether there are multiple
guards. It is also not easy to spot complete mediation on
diagrams, which can lead to errors when additional interfaces
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Fig. 5. The complete mediation notation applied.

Fig. 6. Complete mediation sequence diagram.

or connections are added. For example, Fig. 2 tries to express
that the interfaces of SensorDataDB and OtherDataDB
should only be accessed through PatientDataHandler,
which acts as their guard, but two violations against this rule
are present.

This example can be modelled in MASC as shown in Fig. 5.
Access to the guarded interfaces is limited to the components
on the border. The border is annotated with the security goals,
similar to the interception notation. Border components can
act just like other components, and are not restricted to just
passing along requests. The notation makes violations against
the complete mediation principle (i.e., bypassing the border
component) detectable at a glance. The two violations from
before are marked with dashed lines in Fig. 5.

Because the border components can have arbitrary be-
haviour, MASC also supports the complete mediation notation
for sequence diagrams, as illustrated in Fig. 6. SensorData-
DB (SDDB) and OtherDataDB (ODDB) are shielded, indi-
cated by their shaded backgrounds, and access to them is medi-
ated by the border component PatientDataHandler (PD-
Handler), with the head of the lifeline shaded. The handler
is used by the HospitalUsersFacade (HUF) to access
them. This makes the distinction between protected and unpro-
tected components easy to see. To check if a component may
access a protected component, just check its head to see if it is
a border component. Hence, violations such as the one marked

Temporal validity expresses that the cre-
dential expires after a certain time.
Usage validity expresses that usage of the
credential is limited (e.g., it can only be
used once, such as a code generated by a
token).
Generated expresses that the credential
is randomly generated or has complexity
requirements.
Unforgeable expresses that the credential
is protected from being easily reproduced
(e.g., a smartcard).

Fig. 7. The credential icon with four parameterization dimensions.

in Fig. 6 are again easily spotted. MASC also allows multiple
nested applications of complete mediation, though care should
be taken to limit the number of nested applications in a single
diagram.

D. Additional concepts

In contrast to interception and complete mediation, a repre-
sentation for cryptography, credentials, and policies requires
no invasive changes to UML. These concepts can already
be expressed reasonably well with stereotypes, as illustrated
in Fig. 2. Nevertheless, there is no standardized way for
expressing them, which can lead to confusion or ambiguities.
Furthermore, the textual representation of a stereotype quickly
leads to cluttered diagrams, hindering the readability, and
preventing architects from quickly parsing the information.
Indeed, textual differentiation is recognized as an ineffective
way of dealing with complexity [20].

MASC offers icons to represent these concepts graphically.
It provides the possibility to express sufficient details, while
requiring limited effort to include them in existing solutions.
What follows is a brief overview of the offered representation;
more details can be found in [18].

The cryptography notation expresses the presence of cryp-
tographic techniques (i.e., encryption , signing , hash-
ing , and keys ). It allows to make a distinction
between performing an operation (e.g., encrypting ) and
handling the resulting data (e.g., cipher text ). The algo-
rithms that are used can also be included, contributing to the
standardization concept from Table I. For example, at the top
of Fig. 8, encryption using TLS is applied to the interfaces of
the facades. The symbols enable the designer to check whether
all requirements for cryptographic operations are fulfilled (e.g.,
components have access to the necessary keys).

The credentials notation covers the usage of credentials
(such as passwords) and session identifiers in the archi-
tecture. They help to identify locations in the architecture
where additional measures (such as encryption) are desired
to protect them, or spoofing attacks may occur. The credential
icon is parameterized over four dimensions, to give a rough
indication of its strength (Fig. 7). The icon for sessions also
allows indicating where sessions are initialized , closed ,
and data is stored . This notation allow the designer to
verify whether credentials and sessions need to be protected

4



Fig. 8. The example architecture expressed in MASC.

by cryptographic techniques. In Fig. 8, it is applied to the
AuthNHandler and its interfaces.

The policy notation is used to indicate the different types of
policy points [21] in the architecture, such as enforcement ,
decision , administration , and information ,as well
as places where information is stored that can influence the
outcome of a policy evaluation (e.g., user attributes ). This
allows the designer to specify clearly where policies are stored,
and which components are responsible for evaluating them. It
can also be used to determine which interfaces exhibit user-
role dependent behaviour due to the policies applied to them.
Additionally, it allows for checking if the policy enforcers have
access to the necessary data and interfaces (e.g., user data) to
perform their functions. It is used at the facades in Fig. 8.

Combining these three notations with interception and
complete mediation yields additional analysis opportunities.
For example, it can be determined whether interception is
performed at the required places, as indicated by the policies.
Additionally, it can also be verified whether it is possible to
perform interception at the indicated place in the architecture
(i.e., can the requests be read or are they encrypted, and if so,
does the interceptor have access to the keys?). The complete
mediation notation offers similar possibilities in combination
with the notations from this section. Currently, these checks
can only be performed manually, so they depend on the
expertise of the analyst, but a more precise semantics for
MASC would enable automating them.

IV. RELATED WORK

Our work belongs to the space of model-driven security
research. We do not attempt to give a thorough overview of
this extensive domain here, but refer to existing surveys [22],
[23]. We limit ourselves to a comparison with two of the best-
known examples from this domain.

UMLsec [19] offers a UML profile for annotating a software
design with security-specific information. In comparison with
MASC, the concepts offered by UMLsec are at a lower
level of abstraction. This follows from the different goal

of both approaches: UMLsec is geared towards automated
formal verification, which our approach currently does not
offer. Additionally, the extensive use of stereotypes and tagged
values make UMLsec less suitable as a notation for use by
humans (the primary goal of MASC), as indicated earlier
in section III-D. Additionally, more complex concepts such
as complete mediation, and especially interception, are very
difficult to clearly and unambiguously represent with UML
stereotypes.

SecureUML [24], another well-known approach for model-
driven security, proposes a technique to combine modelling
languages (e.g., UML) and security languages (e.g., a lan-
guage for RBAC) in order to formalise the access control
requirements of a software system, and generate access control
infrastructures. The focus of SecureUML lies primarily on
access control, hence most of the concepts in Table I cannot
be represented.

V. DISCUSSION

We identify three relevant criteria for a good notation: the
quality of the syntax or form, the quality of the semantics
(“What can be represented?”), and the quality of the mapping
between the two.

Syntax: Moody [20] defines 9 criteria for a good visual
notation. Discussing each of them in depth is beyond the
scope of this paper, so we discuss the visual quality as a
whole. MASC provides different, easily discernible symbols.
The appearance of the symbols has been chosen to suggest
their meaning, for example by using a lock icon for encryption,
or a border around shielded components. MASC also uses text
to complement the notation with more detailed information.
The limited set of symbols keeps the notation cognitively
manageable. However, there are also some less optimal as-
pects. As indicated earlier, the meaning of the arrows of
the interception notation is derived from their orientation.
Additionally, MASC does not provide explicit complexity
management mechanisms. Because MASC targets a specific
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subset of the architecture (i.e., the security-relevant parts),
there is a somewhat reduced need for such mechanisms.

Semantics: MASC offers a broad spectrum of frequently
used security concepts, as illustrated in Table I, in order to
allow architects to represent different security aspects and their
interactions. The concepts are obtained from their actual usage
in security principles and patterns, so they cover at least the
range of security issues for which the considered patterns are
applicable. Because security measures often contain a lot of
important details, MASC incorporates these as parameters, so
the information is still recorded and available for analysis.

Mapping: A final important property for a notation is
the mapping between the semantic constructs and the visual
syntax. Each of the 5 concepts from Table I has a separate
representation, so MASC has a 1:1 mapping between syntax
and semantics, which should be strived for [20].

VI. FUTURE WORK

Extensive testing with users is necessary to verify that the
right balance has been achieved between the different qualities,
to collect feedback, and to further refine and improve the
notation. We also plan to use MASC for modelling the security
of existing systems, in order to verify whether the notation is
sufficiently expressive and no gaps exist in the set of concepts.

We expect that the most important shortcomings will be
identified from performing such evaluation studies. Some
incremental improvements that we currently foresee are al-
lowing user-defined parameters (balanced against the possible
increase in ambiguity); extending the policy notation with a
taxonomy for more precision; expanding the expressiveness
by including other concepts or shifting the coverage of the
concepts; and changing the balance between visible and non-
visible properties.

Improvements can also originate from an in-depth compari-
son of MASC with other notations, to discover whether MASC
is equally expressive or if there are perhaps missing concepts.
In addition, further development of tool support is useful to
make MASC more widely available and usable, and can help
with conducting user experiments.

Furthermore, on a longer term, we intend to investigate how
a MASC design can be used to perform a security analysis,
and whether the design can be linked to the implementation
via code generation or reverse engineering, for example.

VII. CONCLUSION

Software architectures are the result of a process that
depends on a lot of knowledge and many different design
decisions, including decisions and knowledge pertaining to the
security of the architecture. These decisions require an explicit
representation in the architectural design documentation, but
a language for adequately documenting them is missing.

In this paper, we present the MASC notation as an extension
of UML. The design of the notation has been driven by
well-known security techniques and goals from the literature,
and their usage in security patterns. It allows for a concise
representation of five recurring security concepts, namely

interception, complete mediation, policies, credentials, and
cryptography. By using MASC, we believe that software
practitioners can more easily specify and become aware of
the security decisions behind of a piece of software, both
during the software’s design phase and in later phases of its
development life cycle.
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