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ABSTRACT
Threat modeling refers to a number of systematic approaches for

eliciting security and privacy threats. Data Flow Diagrams (DFDs)

are the main input for threat modeling techniques such as Microsoft

STRIDE or LINDDUN. They represent system-level abstractions

that lack any architectural knowledge on existing security solutions.

However, this is not how software is built in practice: there are

often previously-made security- and privacy-relevant decisions

that originate from the technological context or domain, reuse, or

external dependencies. Not taking these into account leads to the

enumeration of many non-applicable threats during threat mod-

eling. While recording the effect of these decisions on individual

elements can provide some relief, the lack of a proper first-class

representation causes conflicts when modifying the architecture

and inhibits traceability between effect and decision.

In this paper, we enrich Data Flow Diagrams with security solu-

tion elements, which are taken into account during threat elicitation.

Our modeling approach is supported by a proof-of-concept imple-

mentation of a threat modeling framework and validated in the

context of a STRIDE analysis of an industrial video conferencing

solution that is based on WebRTC. The presented DFD enrichments

are a key enabler for future efforts towards dynamic and continuous

threat modeling.
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1 INTRODUCTION
The principles of Security by Design (SbD) and Privacy by Design

(PbD) are being increasingly recognized as essential to pro-actively

and effectively deal with design flaws that may compromise security

or privacy [1] early in the development life cycle. For example, the

EU-wide General Data Protection Regulation (GDPR) [9] dictates

privacy by design and data protection by design for any system or

service that involves processing personal data. Systematic threat

modeling approaches strongly contribute to the implementation of

such principles, given their methodical and rigorous nature, and

are therefore a cornerstone of architectural risk analysis [20], the

secure development life cycle (SDLC) [15], and security maturity

models such as OpenSAMM [22], for example.

Threat modeling methodologies, such as STRIDE [14, 15] or

its privacy counterpart LINDDUN [7, 34], start from Data Flow

Diagrams (DFDs) [6], which are system-level abstractions that rep-

resent the external entities interacting with the system, processes,

data flows, and data stores. Based on a DFD, a systematic iteration

over all model elements yields potential security or privacy threats

that need to be assessed. In further steps, these threats are doc-

umented and prioritized, and subsequently guide the process of

determining the appropriate security solutions to mitigate them.

Since DFDs represent the system using just four different model

element types, they are in fact architectural views [4, 16] that are rel-

atively easy to create and comprehend. Furthermore, a DFD-based

view of the system under design is strongly suited for highlighting

the security-relevant parts of the system (which often is centered

around data items, and the locations where they are processed and

stored). DFDs are used so frequently for this purpose that they

are sometimes called ‘threat model diagrams’ [26]. However, a key

problem related to using them as the main input for security threat

modeling is that they do not support expressing any security-related

architectural decisions, namely the applied security measures, in a

structured way.

This is problematic because in practice, some security decisions

and constraints are already known early on, as a consequence of

trends and practices such as agile software development, contin-

uous integration, and the common practice of adopting and in-

tegrating third-party solutions (platforms, libraries, middleware,

services, etc.). As already noted by Berger et al. [5], not being able

to explicitly model these decisions (e.g., the use of SSL/TLS for

confidentiality and integrity over a certain channel) prohibits rea-

soning about them during threat modeling, which eventually leads

to duplicated or wasted effort, or worse, threats that are overlooked.

To further underline the importance of making these decisions

explicit, we bring to attention that OWASP’s Software Assurance

https://doi.org/10.1145/3167132.3167285
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Figure 1: WebRTC Data Flow Diagram

Maturity Model (OpenSAMM) [22] requires annotating the threat

model with ‘compensating controls’ (which include technical secu-

rity measures), as well as keeping the controls up to date in every

development cycle, as an explicit activity to attain the highest ma-

turity (level 3) for the Threat Assessment practice.

Existing approaches [21] circumvent this problem in a pragmatic

manner, by adding properties to the DFD elements that capture

some of the effects of the chosen solutions, rather than the solutions

themselves. In this paper, we argue why this is insufficient, and we

present improved modeling support. More precisely, we (i) identify

and discuss four desired qualities that emerge from the ability to

express security solutions, related to semantics, traceability, sepa-

ration of concerns, and dynamic and continuous threat assessment;

(ii) present a meta-model that supports these qualities by enriching

DFDs with security solutions, which are taken into account during

the execution of threat modeling activities and also enables ex-

ploratory change impact analysis or what-if analysis; (iii) provide

a proof-of-concept implementation of the proposed meta-model,

which serves as an enabler for an improved threat modeling frame-

work; and (iv) validate the resulting framework in the context of a

STRIDE analysis of a WebRTC reference architecture.

This paper is structured as follows. Section 2 elaborates on the

motivating case. Section 3 puts forward four qualities and analyses

to what extent they are supported by existing solutions. Section 4

presents our meta-model which enables the incorporation of secu-

rity solutions, followed by a functional validation and evaluation

with the qualities in Section 5. Related work is discussed in Section 6,

and the paper concludes in Section 7.

2 MOTIVATION
To illustrate the concepts in this paper, we use the example of aWeb-

RTC-based multipoint collaboration system. Because the architec-

ture is based onWebRTC, extensive documentation is available [13].

To evaluate the security of this reference architecture, a systematic

threat analysis is performed using the STRIDE methodology [26].

Conducting such a threat analysis starts with the construction of

a DFD model, such as the one shown in Figure 1. A DFD is a simple

and accessible form of an architectural view, which focuses on the

principal entities of the system and the data they communicate

among each other. For threat analysis purposes, trust boundaries

are typically added to the DFD as well. The example DFD contains

7 processes (circles), 2 external entities (rectangles), 2 data stores

(parallel lines), 4 trust border boundaries (the dashed lines) and 28

data flows (bidirectional flows are actually two separate flows).

To perform a STRIDE analysis on such a model, the most well-

known and readily available tool is the Microsoft Threat Modeling

Tool 2016 (TMT) [21].
1
This tool comes with a catalog of 41 generic

threat templates, specified as in Figure 3, which shows the template

for tampering threats due to a lack of input validation. These threat

templates can use the parameters source, target, and flow, which are

instantiated for each individual (directed) data flow in the model

to yield concrete threats that require inspection. In the WebRTC

case, this would yield 236 threats, one of which would be “Potential

Lack of Input Validation for BrowserB”, generated by matching the

“DTLS+SRTP” flow from BrowserA to BrowserB.

This tool already offers some basic support for augmenting DFDs

with security-relevant information. It does this by attaching a cus-

tomizable set of enum-like properties to the DFD elements, such as

“provides confidentiality”, which can take the value ‘Yes’ or ‘No’, for

a data flow. Furthermore, it introduces some subtypes of existing

elements, which constrain some of these properties. For example,

the HTTPS data flow subtype constrains the “confidentiality”, “in-

tegrity”, and “destination authentication” properties to ‘Yes’. These

properties, in conjunction with the exclusion criteria of the threat

template, lead to an elimination of 20% of the threats, thereby re-

ducing the remaining effort.

Despite the simplicity of this approach, there are some incentives

to include security solutions more explicitly into the model. First,

the single decision of using HTTPS leads to, in total, six property

constraints on two distinct data flows. Such a scattered represen-

tation of this solution can lead to errors being introduced in the

model when the solution is instantiated and also makes it difficult

to oversee the impact of applying a certain solution.

Furthermore, since security is a moving target, earlier solutions

need to constantly be revisited when additional information on their

effectiveness becomes available over time. Yet re-evaluating these

solutions becomes more complicated when the only information

about the applied solutions in a model is a scattered set of properties.

Depending on the context of the system under design, it may also

be necessary to conduct auditing or compliance checking. The lack

of an explicit representation of the security solutions that determine

the security of the system severely hampers such auditing activities.

Finally, security expertise is a scarce resource and relies on an

extensive body of security knowledge. Explicit security solutions

are a prime candidate to become part of a reusable catalog which

can make this body of knowledge easily accessible and reusable.

3 QUALITY ANALYSIS
This section elaborates on the desired qualities of security solution

representations in support of threat modeling and discusses to what

degree these qualities are supported in state-of-practice tools or

state-of-the-art approaches.

1
Note that, while we focus on the TMT as an example approach using properties, the

analysis applies to these approaches in general, regardless of the specific tool.
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Figure 2: Data flow specialization for representing HTTP
over TLS in the Microsoft Threat Modeling Tool [21]

Quality 1. – Semantics
The inclusion of security information in a DFD model should support

a first-class representation of security solutions, to enable verifying

the correct application of these solutions and prevent interpretation

ambiguity.

Security is a text-book example of a cross-cutting quality concern,

which explains its impact on multiple elements in the architecture

when security solutions are applied. This has several implications

for representing them in a model: (i) because of the cross-cutting

nature of security, security solution representations should capture

which elements are affected by them, (ii) the representations should

also capture in what capacity DFD elements take part in a solution,

and finally (iii) the representations should facilitate the correct

instantiation of these security solutions in a concrete design.

WebRTC Example. The quality is analyzed using a concrete ex-

ample of the WebRTC Architecture. The communication between

the Browser and the SignalingServer is protected by HTTP over

TLS, a very common security solution for protecting web traffic.

Microsoft Threat Modeling Tool (TMT). The TMT offers a data

flow specialization, HTTP over TLS (HTTPS), to represent this

security solution, shown in Figure 2. This specialization is part of

the built-in set of stencils, offered by the TMT. It has the following

security properties pre-set: {provides confidentiality=true, provides

integrity=true, destination authentication=true}.

Analysis. While destination authentication is a valid security prop-

erty for the data flow from the browser to the server, this is not the

case for the return flow. Destination authentication on the return

flow would imply that the browser is authenticated (to the server),

which is by default not the case for HTTPS. Indeed, it is more often

not the case, as application-level authentication mechanisms (e.g.,

username/password) are used much more frequently. A careless in-

stantiation of HTTPS for the return flows can in this case lead to the

incorrect elimination of spoofing threats of the browser. This shows

that a single specialization with fixed properties is insufficient to

capture the semantics of this security solution.

Additionally, the representation of security solutions by adding

properties to DFD elements raises more questions and semantical

ambiguities, such as: (i) on which element the property should be

set (source, flow, or target); (ii) whether a property on an element

should be interpreted to hold for all flows connected to that element,

only those with an additional property set, or only those that do not

have a specific property set; (iii) keeping such interpretations con-

sistent over time; (iv) whether a property on a flow is implemented

by the sending or receiving element (or both); and (v) whether all

the necessary elements participating in a security solution have the

correct properties set (which is critical to ensure that the chosen

solution is correctly realized).

Quality 2. – Traceability
There should be traceability from the effects of a security solution to

the security solution that caused them, and from a security solution

to the threat type(s) it aims to prevent.

A software architecture can be considered as a set of architec-

tural design decisions [17], which turns the management of these

decisions into an architectural knowledge management [3] prob-

lem. This is no different for security decisions. On the contrary,

keeping this information is essential to prevent the introduction

of security flaws caused by misinterpretation of earlier security

solutions. Capturing architectural decisions is thus essential for

bridging the gap between the architecture and its rationale [33].

By offering traceability, this security decisional information can

be captured in the model. The traceability that should be provided

is two-fold. Firstly, there should be a link from the security effects

to the security solutions providing these effects. By preserving

this link, the actual security solution that was chosen to achieve

these effects remains present in the model. This prevents later

modifications from introducing conflicts because the knowledge

about the original solution was lost. Secondly, the link between a

security solution and the threat type(s) it aims to counter should

also be preserved. Keeping this information preserves the rationale

as to why a specific security solution was instantiated in the design.

By capturing both the decision information (in the form of in-

stantiated security solutions) and the rationale behind this (in the

form of the threat type(s) being countered by that security solution),

previous security decisions can be revisited and the resulting docu-

mentation provides an excellent resource for compliance checking

and auditing the security decisions.

WebRTC Example. The same example from Quality 1 can be re-

visited. What needs to be captured here is that HTTPS is used to

achieve confidentiality and integrity of the dataflows between the

Browser and SignalingServer, as well as ensuring the authenticity of

the SignalingServer process, and that this security solution was in-

stantiated to prevent (i) information disclosure and tampering of the

data sent over these flows, and (ii) spoofing of the SignalingServer .

Microsoft Threat Modeling Tool. The property-based approach

for adding security information does not support the concept of

security solutions as a first-class entity. In the example from Figure 2,

the decision could be reconstructed by combining the HTTPS flows,

although there is no guarantee the correct flows are combined when

reconstructing the decision later on. The only way this knowledge

can be captured is in cases where the security solution can be

represented with the specialization of a single element or flow.

Analysis. The lack of a first-class representation for security so-

lutions makes it hard or impossible to link security effects to the

actual security solution they stem from. The link between the secu-

rity solution and why (for which threat type(s)) it was instantiated

is even more implicit, requiring (in the worst case) a review of the

complete threat template catalog to find out which threat type(s)

are actually countered by the effects.
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Title:
Potential Lack of Input Validation for {target.[Name]}

Include:
( s o u r c e i s [ Gener i c P r o c e s s ] or

s o u r c e i s [ Gener i c E x t e r n a l I n t e r a c t o r ] ) and
t a r g e t i s [ Gener i c P r o c e s s ] and
( f l ow crosses [ Gener i c T ru s t L ine Boundary ] or

f l ow crosses [ Gener i c T ru s t Border Boundary ] )

Exclude:
f l ow . [ P r ov i d e s C o n f i d e n t i a l i t y ] i s ' Yes ' and
f l ow . [ P r ov i d e s I n t e g r i t y ] i s ' Yes '

Figure 3: Tampering threat type from the Microsoft Threat
Modeling Tool [21]

MATCH / / ommitted

WHERE / / ommitted

AND ANY ( d IN f low . da t a WHERE d . I s C o n f i d e n t i a l )

AND NOT f low . I s En c r yp t e d

Figure 4: Threat pattern from Berger et al. [5]

Quality 3. – Separation of concerns
The threat type and security solution catalogs should be structured to

support their independent evolution, limiting the impact of adding,

updating, or removing threat types or security solutions.

The threat type and security solution catalogs are separate con-

cerns and should be structured in way to minimize the impact of

changes to these artefacts, since complete isolation is not possi-

ble because of the dependency between threat types and security

solutions preventing them. Given the dynamic nature of security,

the objective of designing a secure system is a moving target, with

flaws being discovered and existing (previously thought secure)

solutions requiring replacement over time. The artefacts should

support this dynamic nature of security, by allowing limited-impact

changes to security solutions, ensuring the security solution catalog

can remain up to date with changes and insights from the field.

Microsoft Threat Modeling Tool [21], Berger et al. [5]. In the Mi-

crosoft Threat Modeling Tool, but also the DFD extension presented

by Berger et al. [5], security solution information is embedded in

the threat types as exclusion conditions. Examples of these threat

type expressions, in the Microsoft TMT and Berger et al. respec-

tively, are displayed in Figures 3 and 4. The ‘Exclude’ or ‘and not’

expressions in these types explicitly refer to the security properties

set at the element.

Analysis. Including the information about which security solu-

tion effects prevent a threat type in the threat type catalog, creates

a strong dependency from the threat type catalog to the security so-

lution effects. This dependency makes it very difficult to introduce

new security solutions, as every new solution requires a pass over

all relevant threat type generation expressions to add the exclusion

condition(s). This overhead becomes even greater when existing

mechanisms are changed, because in those cases every threat type

generation expression must be checked to make sure the exclusions

correspond with the changes to the security solution.

Quality 4. – Dynamic and continuous threat assessment
Threatmodeling activities should support incomplete and lightweight

architectural design efforts, continuous evolution, and frequent ar-

chitectural refactoring of the system under design. Embedding threat

modeling activities into agile development processes requires new ap-

proaches of dynamic and continuous threatmodeling, and co-evolution

with the system under design.

Traditional threat modeling approaches are designed to be single

shot operations, to be conducted in the early stages of the develop-

ment life cycle, the results of which to take into account in the early

stages of architectural design. This is, however, in stark contrast

with the reality of contemporary software development practice,

which includes approaches such as continuous evolution/integra-

tion and agile software development.

To support this requirement, threat modeling tools should sup-

port and be embedded in these more lightweight software devel-

opment approaches by providing security design assistance, such

as (i) raising awareness of security threats that emerge when the

architecture evolves, (ii) suggesting potential security solutions to

the architect to counter these threats, (iii) providing an assessment

of the architectural impact of these potential security solutions

(change impact analysis), and (iv) integrating with knowledge bases

on security issues that constantly evolve.

Tooling. To our knowledge, no tools exist in the state of the art

nor practice that support this quality requirement.

The ameliorate the issues mentioned above, a richer represen-

tation for security is needed, so security solutions are first-class

citizens in the model.

4 META-MODEL
To improve the state of the art with respect to the four qualities

defined above, we propose a new meta-model as a foundation for

threat modeling tools. The presented meta-model consists of two

parts. The first part serves to capture plain DFDs. The second part

(the security meta-model) is an extension of the first part, and

introduces the following concepts: (i) threat types and their catalog,

(ii) security solutions and their catalog, and (iii) instances of these

security solutions to insert in a concrete model.

4.1 DFD Meta-model
Before being able to capture security information, there needs to be

an underlying model to which the security information can refer

in order to be able to express where and how security solutions are

applied and which element(s) they affect.

The DFD notation is a visual and informal notation [30], with

multiple variants [6, 12]. There is no standardized meta-model

associated with DFDs to precisely specify the elements and their

relations, as there is with more recent modeling languages such as

the UML. Such ameta-model is nevertheless essential for expressing

the effects and implications of applying security solutions.

The meta-model depicted in Figure 5 addresses this by precisely

defining the DFD model elements (Process, DataStore, and Exter-

nalEntity) and how they can be linked together using DataFlows.
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Figure 5: DFD meta-model

It also provides support for trust boundaries (with TrustBound-

aryContainers), which are used in the context of threat modeling to

group elements together with the same ‘trust level’. This allows the

exclusion of some threats between elements with the same ‘trust

level’ (e.g., machines on the internal network do not tamper with

each other’s traffic). This boils down to considering some threat

types only if the data flow crosses a trust boundary.

Plain data flow diagrams do not support the representation of

security solutions. While it is possible to extend the meta-model

to include a list of model element properties (which is what threat

modeling tools commonly do), this solution suffers from the issues

discussed in the quality analysis in the previous section. Therefore, a

more extensive security meta-model is presented in order to capture

more details and intricacies of security solutions in the model.

4.2 Security Meta-model
Figure 6 depicts the proposed meta-model for expressing security

solutions. A security solution is represented as an instance of Se-

curitySolution. These SecuritySolutions can be used to capture, for

example, security patterns [10, 35] to enable their instantiation in

DFDmodels. They are collected in a catalog (shown in color), which

enables reuse of security solutions across multiple DFD models.

The details of a SecuritySolution are specified as follows. A Secu-

ritySolution contains a list of Roles which are generic descriptions

for the involved DFDElements. They are parameterized according

to the required type (e.g., Process or DataFlow). A Role can realize

(i.e., implement) certain CounterMeasure(s), which determine which

specific ThreatType(s) to that element are mitigated. Additionally,

a CounterMeasure can specify to which Roles its protection applies.

For example, the spoofing protection of the server in HTTPS only

applies to those flows that are part of the HTTPS communication,

so the server can still be spoofed in the context of other DFD el-

ements communicating over different flows (e.g., if other clients

communicate with the server process over plain HTTP).

Finally, to use the security solutions in a concrete DFD model,

instances of these SecuritySolutions have to be inserted into the

model. The meta-model allows the specification of a SolutionIn-

stance, which represents such a concrete instantiation in a specific

DFD model. The SolutionInstance contains a list of RoleBindings

which link the Roles from the SecuritySolution to concrete model

Model (model-specific)

SecuritySolutionCatalog (reusable)ThreatType-
Catalog

(reusable)

«Metaclass»
CounterMeasure

T:DFDElement

«Metaclass»
Role

«Metaclass»
SecuritySolution

«Metaclass»
SolutionInstance

T:DFDElement

«Metaclass»
RoleBinding

«Metaclass»
ThreatType

0..1 binds

0..* realizes

0..* protection-
RestrictedTo

0..* 
mitigates

0..* countermeasures

0..1 bindsTo
0..1 securitySolution

roleBinding 0..*

roles 0..*

Figure 6: Security meta-model
The colors are used to indicate whether these elements are specified

in the model or in separate reusable catalogs.

elements of the DFD. The instantiation of a secure pipe security

solution is illustrated in Figure 7, where the SolutionInstance con-

tains the RoleBindings that tie the model elements to the roles they

fulfil in the solution.

During the threat elicitation, the threat elicitation engine (or an-

alyst, in case of a manual elicitation) iterates over the ThreatTypes

in the threat type catalog, and looks for DFD elements that may

be exposed to this ThreatType. This involves verifying whether the

DFD element is not bound to a Role that provides a CounterMea-

sure against the ThreatType being considered (and whether that

CounterMeasure’s protection is not limited to certain roles in the

security solution). This means that the only check that happens is

whether there already exists a CounterMeasure that prevents the

considered ThreatType, independent from the actual SecuritySolu-

tion that provides that CounterMeasure. For example, the presence

of an encryption countermeasure prevents an information disclo-

sure threat, regardless of whether that countermeasure is part of

a VPN or HTTPS security solution. This is a desired property, be-

cause it ensures that the threat type catalog remains maximally

independent from the security solutions catalog.

5 EVALUATION
This section provides a functional validation of the presented meta-

model and an evaluation using the four qualities from Section 3.

5.1 Functional validation
The presentedmeta-model is implemented in Ecore from the Eclipse

Modeling Framework
2
(EMF) and is available as an Eclipse plug-

in. A graphical editor for the creating and editing models in this

meta-model is implemented using a Sirius Viewpoint Specification
3
.

Included are a number model validation rules specified in Acceleo

Query Language
4
(AQL), to prevent common flaws in DFD models.

Since the focus is on the semantics of the meta-model, and not the

visual syntax of DFD-models and their security solutions, there is

not yet a visual syntax for representing security solutions.

2
https://www.eclipse.org/modeling/emf/

3
https://www.eclipse.org/sirius/

4
https://www.eclipse.org/acceleo/documentation/aql.html
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SecurePipeInstance

SecurePipe

MAC:CMEnc:CMAuthN:CM

EDIRT

Fl2
Fl1 RcpntSndr

Flow1
Flow2

RecipientSender

S

Client Server
df2

df1

Figure 7: Example instantiation of the secure pipe solution.
The right-hand side shows (from top to bottom) the ThreatTypes,

CounterMeasures, and SecuritySolution containing 4 Roles. The

left-hand side shows the DFD model and (below that) the SolutionIn-

stance containing the 4 RoleBindings, linking DFD model elements

to the solution’s roles. The same color-coding is used as in Figure 6.

Note that the focus is on the semantics of the model, not on the syntax

of the visual representation.

For eliciting the threats, VIATRA
5
is used, which provides a

graph-based pattern language. The specified patterns consist of 18

private patterns to be reused in other patterns to simplify commonly-

occurring conditions (e.g., a flow crossing a trust boundary, check-

ing for countermeasures against a certain threat type), and 21 DFD

patterns (e.g., ExternalEntity-DataFlow-Process, Process-DataFlow-

DataStore) used to match for concrete threats. VIATRA supports

dynamic pattern matches, so the pattern results are updated on-

the-fly while the model is being changed or enriched with security

solutions. This allows the designer to conduct what-if analyses

by making changes to the model and immediately evaluating the

impact of those changes on the resulting threats.

More information on the prototype implementation is made

available on the companion website for this paper [27].

5.2 Quality evaluation
In this section, we evaluate the presented approach to model secu-

rity elements in terms of the four qualities discussed in Section 3.

Quality 1: Semantics
Security solutions are represented in the DFD-model by creat-

ing an instance of it and binding concrete DFD model elements to

its roles. It is the binding to a role that realizes a countermeasure

which determines whether a specific threat applies to an element.

The generic representation of security solutions has the following

advantages: (i) asymmetric security solutions (e.g., bi-directional

HTTPS with server-side-only authentication) can be expressed, as

the effects can be realized in separate roles, (ii) there is no con-

fusion as to how a countermeasure needs to be interpreted (e.g.,

the restriction to certain flows can be expressed in the model), and

(iii) there are no conflicts when multiple countermeasures are ap-

plied on a single element, as this just implies multiple role bindings

(if specializations of elements are used, the combination of multiple

countermeasures would require, for example, using two different

data flows at the same time).

5
https://www.eclipse.org/viatra/

The following reasoning provides an intuitive argument as to

why the presented meta-model provides a strictly positive improve-

ment of the semantic quality. It consists of two parts: (i) the pre-

sented meta-model is equally expressive as the property-based

approach, and (ii) the presented meta-model can be used to ex-

press security solutions that cannot be properly expressed using

the property-based approach.

(i) The meta-model is equally expressive as the property-based

approach because it can simulate it. Every possible property on DFD

elements can be represented as a very simplified security solution

with a single role to specify the element with its property.

(ii) The example discussed in Section 3 for Quality 1 presents

the application of SSL/TLS for the protection of communication

between a client and a server. This mechanism is asymmetric be-

cause the destination authentication part of the security solution

only for the communication from the client to the server, while

instead, source authentication holds for the communication in the

other direction. Consider the situation in which S/MIME is used on

top of the SSL/TLS connection. S/MIME is a common email secu-

rity solution that protects the confidentiality and integrity of email

messages, but also provides non-repudiation of the sender. In the

property-based approach, this cannot be added as a specialization

of a dataflow, because another specialization (for TLS/SSL) would

already be present. The only solutions to this problem would be to

either create a new SSL/TLS+S/MIME dataflow type, or manually

set the properties of the dataflow element to the combined effect of

both countermeasures. Neither of these solutions is satisfactory, nor

corresponds with a correct representation of the actual security so-

lution. Such mismatches between the actual security solutions and

their suboptimal representations can cause certain properties to be

missed (or carelessly changed afterwards), leading to the incorrect

application of security solutions.

Quality 2: Traceability
Traceability is a critical quality for being able to revisit, evaluate,

and check previously made security decisions. The closest that the

property-based approach can come to realizing traceability is by

extensive use of specializations of the DFD elements. However,

this quickly reaches its limits when multiple specializations of an

element are needed at the same time, as illustrated before with

SSL/TLS and S/MIME. By providing an explicit, first-class repre-

sentation for security solutions, every decision to apply a certain

security solution manifests itself explicitly, namely by including an

instance of that security solution in the DFD model. This makes

every effect traceable to its underlying security solution.

Besides the traceability from effect to solution (and vice versa),

the security solutions are also explicitly linked (via the solution

catalog) to the security threat types that they counter, thereby

also enabling traceability from security solution to threat type. In

case of the Microsoft TMT, on the other hand, the internal threat

generation expressions of all threat types would have to be checked

to find out which threat types are countered by some property.

Keeping the link intact between the security solutions and the

threat types they counter has several additional benefits: (i) threats

are not eliminated; instead, there is a ‘mitigated by’ relation between

a concrete threat and the security solution instance; (ii) the explicit

link enables additional analysis on threat impact and likelihood,
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taking the precise DFD elements, threat type, and security solution–

context into account; and (iii) changes to the protections provided

by a solution can be evaluated simultaneously over all instances

of that solution (for example, assessing the impact of the failure of

some security solution’s information disclosure countermeasure),

thereby also enabling Quality 4.

Quality 3: Separation of Concerns
An evaluation of the separation of concerns quality is provided

based on the impact of the following change scenarios: (i) changing

security solutions (add/modify/remove), and (ii) changing threat

types (add/modify/remove) in a property-based and our approach.

Changing security solutions – property-based. A new security so-

lution requires the definition of new properties for the effects of

the solution, possibly new specializations of existing DFD elements,

and modifying the exclusion conditions for each threat type which

is countered by the solution.

Modifying or removing a solution, requires the following changes:

all the threat type expressions must be checked and updated to re-

flect the changes in the properties, any specializations using those

properties may need to be updated, and any existing models using

those security solutions may require updates. There is thus a large

ripple effect when existing measures are updated, especially in the

threat type expressions of which all the exclusion criteria have to

be rechecked.

Changing security solutions – our approach. A new security so-

lution only requires a change in the security solution catalog to

introduce the (model representation of the) new solution, its roles,

and the information about which threat types it counters.

Modifying or removing a solution only requires a change to exist-

ing models if the solution’s roles change. If the change is limited

to the threat types being prevented, existing models can use the

new solution definition as-is, and the threat analysis results are

automatically updated.

Changing threat types – property-based. Adding, modifying, or

removing threat types only requires changes to the threat type cata-

log. Even the removal does not require changes to the properties or

stencils, although some properties may no longer be used. Keeping

these properties can lead to a bloated list of properties, causing

confusion or flaws in a model when they are still used later on.

Changing threat types – our approach. Adding ormodifying threat

types are changes limited to the threat type catalog. Only the re-

moval of threat types will require updating the security solution

catalog as the threat types, the security solutions refer to, no longer

exist.

The dynamic nature of security makes changes to existing secu-

rity solutions very likely as flaws may be found in these solutions

and new versions are made available; such changes can be problem-

atic for the property-based approach as they require checking and

updating the threat type generation expressions for each change.

Quality 4: Dynamism and continuous threat assessment
Because this quality strongly depends on appropriate tool sup-

port being available and the presented approach is limited to a

prototype implementation, the evaluation of this quality is limited

to a discussion on how, and to what extent, the presented model

provides the foundation for enabling this quality in future tool

support implementations.

Four elements are considered: (i) threat evolution, (ii) suggesting

solutions, (iii) solution impact analysis, and (iv) knowledge base

integration. We consider to what degree these elements are already

realized in the prototype implementation, or could be realized in

future implementations.

(i) The basic mechanism for threat evolution is already realized in

the prototype. Threat type pattern matching is implemented using

VIATRA IncQuery patterns, which enables dynamic pattern match-

ing so any changes to the model are immediately reflected in the

list of concrete threats. Further refinements are possible however,

such as, for example, highlighting recently changed threats.

(ii) Suggesting security solutions is currently not implemented.

However, making the security solutions and their associated roles

and countermeasures explicit provides an essential building block

to develop such a feature in the future.

(iii) The prototype implementation already has basic support for

evaluating the architectural impact security solutions. By updating

the concrete threat list, immediate feedback is provided on the

impact of instantiating a particular solution.

(iv) Finally, the consolidation of security solutions in a catalog

forms a good starting point for a reusable design-level security

knowledge base. This catalog can evolve into a reusable and cen-

trally shared resource, embedding current knowledge on security

solutions and the threat types they counter.

6 RELATEDWORK
Threat modeling has been introduced by Microsoft as a part of

its security efforts [14, 15, 25, 29, 31] and is part of its security

development life cycle [15]. It has been applied several times since,

in real-world industrial contexts [8, 25, 31].

Data Flow Diagrams (DFDs) are the core artefacts used in these

threat modeling approaches, but mainly as graphical models. There

are some efforts towards more formal underpinnings for functional

correctness [11, 30], or extensions to focus security threat analysis

on the most relevant threats [32]. Berger et al. [5] also recently

proposed a DFD extension for threat extraction. Their work is

centered around an extensive catalog of threats such as CAPEC

and CWE, while our approach is focused on the representation of

security solutions.

Following the growing importance of privacy over the last few

years, threat modeling has been extended to also elicit privacy

threats [1, 7, 34], thereby enabling privacy by design. To support

this in DFDmodels, Antignac et al. [2] presented a DFD extension to

support privacy concepts. While our implementation does not yet

support such privacy annotations (e.g., data, purpose), this would

be a relevant future extension, especially if the solution catalog is

extended with privacy solutions.

Other approaches of for the elicitation of security requirements

include risk analysis [28], which can actually be used in a com-

plementary fashion to threat modeling by using it for prioritiza-

tion [23]. Such a complementary approach is closely related to the

realization of Quality 4, by moving from a binary (threat is appli-

cable or not) analysis result to a more quantitative threat analysis

result based on risk (e.g., likelihood and impact).
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Besides STRIDE, there are also more extensive threat classifica-

tion systems [18]. The presented meta-model does not enforce a

certain classification scheme, so other threat types can also be used.

Finally, there are some other approaches to security such as

attack trees [24], which start from the perspective of an attacker

that wants to achieve a goal, and from there explore the attacker’s

possibilities to achieve that goal and possible countermeasures to

prevent it. Such an approach is more perpendicular, as it enables

an in-depth analysis of a particular threat and provides guidance in

choosing how to protect against that threat. Related to that, there

are systematic approaches, such as Li et al. [19], that leverage attack

pattern repositories such as CAPEC to identify attacks.

7 CONCLUSION
The integration of threat modeling in the software development life

cycle is a highly promising way to implement Security by Design

and Privacy by Design. Unfortunately, existing threat modeling

approaches that rely on plain DFDs commonly lead to combinatorial

explosions of threats. In practice, they therefore rely extensively

on extensions that limit the amount of raised threats and the effort

required for processing them.

However, when used carelessly, such extensions can lead to

the omission of security or privacy threats that are not actually

mitigated. In this paper, we have presented an approach to limit and

scope the threat elicitation space by leveraging knowledge about

existing security solutions in the system under design.

For our approach, we have shown positive improvements in

terms of semantic quality, traceability, separation of concerns, and

dynamism, respectively due to (i) the proper instantiation of secu-

rity solutions in the system under design, (ii) traceability of security

effects to the security solutions causing these effects, and thereby

ensuring that the decisions to apply these security solutions remain

documented, (iii) independent evolution of the security solution

catalog to stay on par with evolutions in the field, and (iv) dynamic

and continuous threat assessment by providing impact analysis and

architecture-level security decision making support.

We believe that the additional complexity introduced by our

approach is manageable in practice given appropriate tool support,

which will be evaluated more thoroughly in the future. Further-

more, we will look at more dynamic approaches, in which binary

threat classifications (e.g., threat mitigated or threat not applicable)

are replaced with probabilistic values that better characterize the

degree of certainty with which a specific security solution prohibits

certain security threats. This will allow for constant re-assessment

of threats, for example when new vulnerabilities arise or when

specific architectural assumptions are invalidated over time. In

addition, we will research the degree to which the selection of

appropriate security solutions can be approached as a search prob-

lem (in search-based software engineering), using the coverage of

threats as an optimization goal.
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