
Automated Threat Analysis and Management in a
Continuous Integration Pipeline

Laurens Sion, Dimitri Van Landuyt, Koen Yskout, Stef Verreydt, Wouter Joosen
imec-DistriNet, KU Leuven

Heverlee, Belgium
firstname.lastname@cs.kuleuven.be

Abstract—Security and privacy threat modeling is commonly
applied to systematically identify and address design-level secu-
rity and privacy concerns in the early stages of architecture and
design. Identifying and resolving these threats should remain a
continuous concern during the development lifecycle. Especially
with contemporary agile development practices, a single-shot
upfront analysis becomes quickly outdated. Despite it being
explicitly recommended by experts, existing threat modeling
approaches focus largely on early development phases and
provide limited support during later implementation phases.

In this paper, we present an integrated threat analysis
toolchain to support automated, continuous threat elicitation,
assessment, and mitigation as part of a continuous integration
pipeline in the GitLab DevOps platform. This type of automation
allows for continuous attention to security and privacy threats
during development at the level of individual commits, supports
monitoring and managing the progress in addressing security
and privacy threats over time, and enables more advanced and
fine-grained analyses such as assessing the impact of proposed
changes in different code branches or merge/pull requests by
analyzing the changes to the threat model.

Index Terms—threat modeling, threat analysis, security by
design, privacy by design, threat management

I. INTRODUCTION

Security and privacy require continuous attention through-
out the software development lifecycle (SDLC). It is well-
known, though, that absolute security cannot be achieved,
and compromises must be made. In practice, security efforts
should therefore be directed towards conscious management of
risk and security debt [1], a form of technical debt. Without
sufficient attention to security, the security debt and risk may
increase beyond acceptable levels, increasing the likelihood of
security incidents and associated losses, and making it hard to
recover without major investments and delays.

Security and privacy threat modeling techniques [2]–[5] are
typically applied in the early phases (requirements and design)
of the SDLC. These approaches reason at an abstract level
about the system, often in the form of a Data Flow Diagram
(DFD), to elicit many potential security threats. In a next step,
mitigations for the most important of these threats (in terms
of risk) are selected, which can then be incorporated during
the software development.

Current threat modeling approaches are not well-aligned
with contemporary development practices. Modern software

This research is partially funded by the Research Fund KU Leuven and the
Cybersecurity Initiative Flanders.

development happens at a fast pace with frequent changes to
the code base to introduce new functionality, fix bugs, and
refactor the design. Continuous integration (CI) is one of the
enablers of this fast pace. Threat modeling, on the other hand,
is often a manual, time-consuming, one-off (or infrequently
repeated) activity conducted in workshops involving experts
and numerous stakeholders [6], [7]. This prohibits frequent
re-evaluation as the software design evolves. This in turn is
considered problematic, because the goal of threat modeling
is precisely to identify threats that carry a significant risk, and
(because they are linked to the design) that may be hard to
mitigate afterwards.

An additional problem associated with infrequently revis-
iting a threat model is that it hampers adequate management
of the risk and security debt as part of project management.
Indeed, effective decision-making relies on having a clear view
on the current status and progress, the impact of the possible
choices, and the effectiveness of past decisions and efforts.
Infrequent threat modeling only yields a coarse-grained view
on the progress that is being made, though, precluding swift
reactions to emerging risks.

This paper proposes CTAM (Continuous Threat Analysis &
Management), a toolchain that addresses these problems by
technically integrating an automated threat analysis and assess-
ment activity in a continuous integration pipeline. This enables
stakeholders to monitor threat modeling results, and track
and manage the evolution of risk based on information that
evolves together with the implementation. CTAM leverages
the possibilities offered by automated threat modeling tools
to achieve traceable, systematic, and frequent re-assessments.
The input for an existing threat modeling tool, which consists
mainly of a model-based representation of the system (e.g., a
DFD), is placed and maintained alongside the source code in
a version control system. The automated threat modeling tool
is then used as a standalone analysis engine in a continuous
integration job. By combining the automated analysis results
with the existing version information from the repository, the
current state and historic evolution of the threat model, as well
as the impact of suggested modifications in different branches,
can be assessed and presented on a dashboard.

This paper introduces the following contributions: (i) it
presents the CTAM toolchain, leveraging existing threat model-
ing tools, to enable systematic, automated threat analysis and
management; (ii) it validates the prototype on an application

© 2021 Laurens Sion. Under license to IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://doi.org/10.1109/SecDev51306.2021.00021

1

https://doi.org/10.1109/SecDev51306.2021.00021


case, demonstrating its capability to recognize a number
of different risk evolution patterns; and (iii) it provides an
in-depth discussion on automated threat modeling as part of a
continuous integration pipeline.

This CTAM toolchain is a technological enabler that supports
the development and evaluation of more advanced analysis
techniques to measure and monitor threat modeling progress.

This paper is structured as follows. Section II describes the
related work on threat modeling and continuous quality assess-
ment. Next, Section III presents CTAM and the implementation
aimed at demonstrating its feasibility. Then, Section IV applies
CTAM on an application case of Software-as-a-Service (SaaS)
document generation and delivery platform and illustrates the
type of analysis that it enables. Afterwards, Section V provides
a discussion on the use of CTAM, including the possibility of
using other threat elicitation engines, the importance of the
consistency of the model with the source code, and additional
analysis types that become available with CTAM. Finally,
Section VI concludes the paper.

II. RELATED WORK

Continuous integration refers to software development prac-
tices that are centered heavily around a central version con-
trol system and code repository. These systems implement
a pipeline of automated activities which typically include
activities aimed at quality control (e.g., code syntax check-
ing), automated testing (e.g., regression testing, integration
testing, acceptance testing), and automated building and build
management. Automating these activities allows for frequent
execution at the level of individual code commits, providing
the developer with rapid feedback, and shortening the time to
address issues. These key principles enable ensuring a certain
degree of quality assurance.

This section outlines the related work on threat modeling
in this context. First, the current state of the threat modeling
support during development is discussed. Next, the state of the
art in continuous integration and security analysis activities in
this context is outlined.

A. Threat modeling support during development

Several threat modeling tools and approaches, such as
IriusRisk [8] and Autodesk CTM [9] promote the integration
of threat modeling during development specifically by linking
threats to issues in an issue tracker. While this enables tracking
the progress regarding the identified security and privacy
threats, the threat mitigation progress is monitored in the issue
tracker, rather than in the system model. Furthermore, while
such approaches may support versioning of the system model,
they do not support analysis of the evolution of a threat model.

More closely aligned with the source code is Threat-
Spec [10]. It provides a set of code annotations that can assist
in constructing and maintaining a DFD model by inserting
comments at the relevant locations in the source code. Threat-
Spec does not perform any threat elicitation by itself, so the
extracted model will have to be analyzed manually or with
another tool to obtain a list of threats to further analyze and

aggregate. It does allow documenting threats and mitigations
through code annotations so that the results of the threat
elicitation activity can be captured as well.

Pytm [11] generates diagrams (DFDs and sequence dia-
grams) and threats based on a system model expressed in
Python code. Such a representation enables versioning the
system model together with the source code. It does not,
however, provide risk estimates for threats, so monitoring
progress in terms of risk reduction requires additional analysis.

SPARTA [12] is an eclipse-based threat modeling tool that
elicits security and privacy threats based on XMI-files of
solution-enriched DFDs and threat catalogs (for example, the
STRIDE [3] and LINDDUN [13] threat types are supported).
SPARTA provides risk estimates for individual threats and
calculates the aggregate values for the system, which could
be used to monitor the threat mitigation progress over time.
SPARTA does not support any historical analysis of threat
mitigation progress.

Threagile [14] generates threat model reports based on
YAML-files of the architecture and its assets and provides
pipeline integration to do so in a continuous fashion. However,
such analyses are only focused on a single version of the
system; it does not analyze how those threat models evolve
over multiple versions of the system.

OWASP’s Threat Dragon [15] is an open-source threat
modeling platform for system modeling and threat elicitation.
Its documentation mentions that future versions should provide
an API for pipeline integration, but this is not supported at the
time of writing.

B. Quality assessment in continuous integration pipelines

Several approaches exist that conduct frequent code analysis
for measuring the impact on qualities such as performance,
maintainability, security, etc. For example, the PerfCI tool [16]
integrates automated performance benchmarks to identify po-
tential performance regressions over time. Vassallo et al. [17]
in turn presented an approach that automates and integrates
the identification of bad practices, anti-patterns, or common
misconfigurations in a CI pipeline.

The automation of these activities is a key enabler for
extensive data analytics at the level of the code base: the
evolution of a code base in terms of software quality can be
monitored and evaluated [18] over longer periods of time.

Static code checkers (SAST) allow for the identification of
vulnerabilities as a result of code-centric analysis [19], [20].
As discussed by Rangnau et al. [21], integrating dynamic secu-
rity testing (DAST) is more challenging as these more advanced
analysis techniques incur a more significant performance cost,
to the extent that the total cost of their integration in a CI
pipeline might become prohibitive.

To our knowledge, model-based analysis activities that
identify threat scenarios at the level of an abstraction model
of the system (i.e. threat modeling and threat-based risk
assessment) have not yet been integrated in a practical CI
pipeline, with the exception of Threagile [14] which does not
consider the analysis over time. Yet, threat modeling experts

2



Fig. 1. Overview of the approach.
On the left-hand side, changes to the codebase and model are committed and
pushed to a repository on GitLab. This triggers the CI jobs that will run the
threat analysis engine (bottom-center), of which the results will be submitted
to the server. Finally, the developers can consult the impact of their changes
on a dashboard presenting the analysis results (right-hand side).

and advocates strongly encourage frequent re-evaluation of the
outcome of a threat modeling and analysis exercise [3], [22]–
[24] throughout the development of a system. In this article,
we present the practical implementation of such an activity in
the GitLab DevOps platform [25].

III. CONTINUOUS THREAT ANALYSIS & MANAGEMENT

The main goal of CTAM is to automate continuous threat
analysis, management, and progress monitoring by integrating
it in continuous integration pipelines. This is achieved by:
(i) storing the model together with the source code in version
control (this model contains the DFD, the applied security and
privacy solutions, and inputs for the risk analysis); (ii) for
every push to the repository, running a continuous integration
analysis job to elicit security or privacy threats and perform a
risk analysis on them; (iii) collecting and aggregating these
results in the CTAM server; and (iv) making these results
available as feedback to the developers. Figure 1 provides a
graphical overview of the approach. The next subsections will
elaborate on the technical realization of steps (ii) and (iii),
followed by a description of the types of analysis activities
that can be performed in this context.

A. Threat analysis engine

For the individual threat analysis, CTAM currently leverages
SPARTA [26] and its enablers, namely (i) the automated
generation of threats at the basis of a (customizable) threat
catalog, (ii) per threat, a risk estimation step [27] that takes
into account many factors documented in the input model (e.g.,
the application of security solutions [12], a description of the
affected data subjects in case of privacy [28]), and finally,
(iii) the aggregation and disclosure of these outcomes. All the
relevant data (i.e. the DFD model, solutions, and threat type
catalogs) for SPARTA’s analysis are contained in one (or more)
model files that will be read by the analysis engine.

SPARTA elicits threats by performing model queries on the
supplied model. The threat type catalogs contained in the
model specify the criteria for the threats to be applicable and
can be used to encode, for example, element- or interaction-
based STRIDE threats as well as more complex threat patterns.
As the main input of the analysis is the model of the system
under development, the scope of the analysis is necessarily
limited to the design of this system, as there is no operational
context to take into account. It is, however, possible to
explicitly include such details in the model, but these details
will not correspond with concrete elements in the source code.

For the risk analysis and prioritization, SPARTA processes
the information in the model (i.e. asset value, strength of
security solutions, etc.) to determine how effective the coun-
termeasures are to protect against the elicited threats. The
resulting value is the expected loss, expressed in the same
unit as the asset value. It is up to the developers or business
stakeholders to provide this information in a unit that is
convenient to them.

We created a dockerized version of the SPARTA threat
elicitation and assessment engine, which reads a configuration
file (specifying the model file and the submission server),
analyzes the model (i.e. elicits security or privacy threats and
performs a risk assessment of these threats), and submits the
threat elicitation results to the submission server. The bottom
of Fig. 1 depicts these steps graphically. The threat analysis
engine in the center runs on the last commit, analyzes the
model contained therein, and submits the results.

The docker container enables the use of SPARTA in GitLab
CI jobs [25]. The only additional information required in
the repository is the DFD model file and the aforementioned
configuration file. Because individual commits are analyzed,
that model file will need to accurately reflect any changes that
are made to the codebase. Section V further discusses the need
for an accurate model of the system under analysis.

Finally, it is possible to use other threat modeling tools for
the elicitation, as long as they yield appropriately formatted
threats and risk estimates for submission to the CTAM server
(see Section V-A for a discussion on this).

B. Server

The server component is a Spring boot application. Reg-
istering a new project requires a deployment token and the
repository URL. This is used by the server to retrieve the com-
mit history from GitLab. When analysis results are submitted
by the threat analysis engine, these results are associated with
the corresponding git commits to enable the construction of an
overview dashboard (depicted in the right-hand side of Fig. 1).

When a developer consults the CTAM dashboard, the server
constructs a historical overview of the evolution of the aggre-
gated risk by combining the analysis results for the commit
ancestors on the main branch of the repository. This comprises
the following calculations per commit: (i) the threat count;
(ii) the total inherent risk (by aggregating the inherent risk
of the individual threats); (iii) the total residual risk (also by
aggregating); (iv) the risk reduction (as the mitigated risk over

3



Fig. 2. CTAM dashboard.
The dashboard presents the main metrics of the last commit (top row), the evolution of the number of threats and the residual and inherent risk (middle row),
and the progress in reducing the risk and the overview of the prioritized threats in the last analysis results (bottom row).

the inherent risk); and (v) the classification into categories
(by binning the threats in equal intervals based on the largest
inherent risk encountered in the analysis of the commit). This
initial set of measurements can be expanded with additional
ones that can be calculated from the submitted threat results
such as the most frequently occurring threat types, the system
elements with the largest residual risk, etc.

Figure 2 shows the CTAM dashboard containing information
on the evolution of threats, the estimated risk, and the progress
in reducing that risk for a specific project. In addition to a
project-wide overview, the developer can also select any ana-
lyzed commit from the overview to obtain the detailed analysis
results for that specific version of the system, including the full
list of elicited threats.

C. Analysis

CTAM enables several types of analysis activities through
its systematic collection of threat analysis information as
the software system evolves over time. It currently leverages
SPARTA for the threat analysis results and hence also relies
on the residual and inherent risk values that SPARTA provides.
Inherent risk represents the risk disregarding any security or
privacy solutions (i.e. the risk if fully vulnerable). Residual
risk represents the risk taking into account security and privacy
solutions (i.e. the inherent risk minus the effect of security and
privacy solutions). However, it is also possible to use different

risk scores, as long as they incorporate the effect of partially
or completely mitigating threats in the system.

By collecting the inherent and the residual risk for every
committed version of the system under consideration, the
overall progress in securing the system can be assessed. Table I
presents an overview of the different risk evolution patterns
that may emerge through the combination of a decrease, stable,
or increase of the inherent and residual risk values.1 These
patterns allow developers to gain insight into the progress that
is being made over time. For example, these patterns will show
which commits focus on security (reducing the residual risk)
or on expanding functionality (increased residual risk). It will
also show how these types of changes manifest themselves
over time (e.g., whether security is always considered after
new functionality has been introduced).

The next section discusses the functional validation of our
tool and illustrates with a number of concrete changes in
an example application how the effects of these changes can
indeed be observed in the aggregated overview.

1While Table I shows those patterns as nine distinct possibilities, there
is actually a continuum as one sort of risk may, for instance, decrease
more rapidly than the other one. For example, if both secure and insecure
functionality (cells VII and IV in Table I) is removed from the system in a
single commit, both the residual and the inherent risk plot lines will decrease,
but the residual risk line will have a more shallow slope.

4



TABLE I
RISK EVOLUTION PATTERNS.

Residual Risk Inherent Risk (top line)

(bottom line) Decrease Stable Increase

Increase I II III

Remove security solutions* Remove security solutions Add insecure functionality

Stable IV V VI

Remove secure functionality No security-relevant changes Add secure functionality

Decrease VII VIII IX

Remove insecure functionality Add security solutions Add security solutions*

Plots for the different risk evolution patterns due to decreasing, stable, or increasing inherent and residual risk values. The area plots are not
stacked (i.e. the inherent risk consists of the entire area under the line including the residual risk). Combinations of these patterns are possible
to express to different slopes of the inherent and residual risk plot lines. For example, combining VII and IV results in a more slowly decreasing
residual risk, combining III and VI in a more slowly increasing residual risk, etc.
* Solutions that introduce additional risk with regard to, for example, cryptographic key material.

IV. FUNCTIONAL VALIDATION

This section presents the functional validation of CTAM on
an illustrative application case. First, the application itself is
described. Next, a number of deliberate change scenarios are
introduced to assess the effect of different types of changes
(e.g., new functionality, securing existing functionality). After
each of these changes, the resulting model is analyzed, and
the analysis results are collected. Finally, the results for each
change scenario are discussed, highlighting the usefulness of
CTAM in measuring and monitoring the security impact during
software development.

A. Description of the case

We apply our prototype on a SaaS application for generating
and delivering PDF documents (e.g., invoices, pay slips), via
different delivery channels (e.g., email, print) to end users.
One of those channels is a hosted Personal Document Store
(PDS) on which users can login to retrieve documents sent
to them. Figure 3 shows the DFD of this system. The center
part of the figure contains the core of the system’s delivery
services. The left-hand side contains the integration with third
parties for delivery via print, email, etc. The right-hand side
models the hosted PDS from which users can directly access
their documents. The next section will refer to this diagram
when explaining the different changes that will be made to
this system to validate the CTAM prototype.

B. Change scenarios

We validate our approach with five specific change scenarios
(affecting both functionality and security solutions). Each of
these changes are applied to the DFD model of the document
processing system in separate commits to enable the analysis
of their impact. The security solutions mentioned below in-
clude encryption, authentication, and access control to protect
against information disclosure, tampering, and spoofing.

C0 The initial version of the system does not contain the
PDS functionality (i.e. no E4, DS2, DS3, P3, nor any
of the data flows to or from them), nor the banking
integration (i.e. no E2 or any its data flows), nor any
security solutions to protect the communication with E3.

C1 The first commit introduces secure functionality by
adding the banking integration (E2) together with some
security solutions to protect the communication with E2.

C2 This commit exclusively affects security, by introducing
a security solution to protect the communication with the
email provider (E3).

C3 This commit adds the PDS functionality (i.e. E1, DS2,
DS3, P3, and the data flows), but does not introduce any
security solutions to secure this functionality.

C4 This commit adds security solutions to protect the com-
munication between the PDS users (E4) and the PDS. This
does not secure all the functionality introduced by C3.

5



Document Processing and Delivery Service

E1 Print
service

P1
Scheduler

DS1 archive DS2 PDS Docs

E2 Banking DS3 User data E4 PDS User

E3 Email
Provider

P2
Delivery

P3
PDS

DF11

DF12

DF13

DF14

DF1

DF2DF3

DF4

DF5

DF15,DF16

DF17,DF18

DF21,
DF22

DF23

DF19,DF24,DF25

DF20

DF9,DF10

DF6,DF7,DF8

Fig. 3. Data Flow Diagram (DFD) of the document processing and delivery service.
This diagram shows the delivery components of this system together with the storage in the center of the diagram. The left-hand side shows various third
party delivery services, while the right-hand side shows the hosted personal document store (PDS) from which users can retrieve the documents sent to them.
To improve the readability of the diagram, multiple flows in the same direction are combined together (e.g., DF17, DF18).

C5 Finally, this commit removes all data stores and the
scheduler (i.e. remove P1, DS1–3, and their data flows).2

Each of these changes are introduced in separate commits
and pushed to a GitLab instance to trigger the continuous
integration jobs which analyze the modified DFD model and
submit the analysis results to the CTAM server.

C. Results

Figure 4 shows the analysis results as reported by the CTAM
server after receiving the results from SPARTA for each of the
introduced changes. This section revisits each of these changes
to explain the risk evolution pattern encountered in the results
and refers to the corresponding cells in Table I.

C1 As shown in Fig. 4, the residual risk line is not perfectly
stable: the change actually did result in an increase of the
residual risk due to the fact that the solutions do not fully
mitigate the total risk introduced by the new functionality.
Hence, the change corresponds with cells VI and III in Table I.

C2 With the exception of some small variance in the risk
estimation, the inherent risk remains stable, while the residual
risk is reduced. This corresponds with cell VIII in Table I.

C3 This change scenario involves a substantial modifica-
tion, as also visible from the analysis results. As this change
scenario does not consider security, it results in both an
increase of the inherent risk and the residual risk. As such,
this is an example of the pattern in cell III in Table I.

C4 As this change scenario only secures the interaction
between the end-user and the PDS, it does not mitigate all
the newly-introduces risk from the previous change scenario.
As it only introduces security solutions, it again corresponds
with cell VIII in Table I.

C5 The final change removes insecure functionality from
the model (all internal storage and the scheduling process).

2While this is an unrealistic modification, it demonstrates the impact of
removing insecure functionality from the system.

VI–III
VIII

III

VIII

VII

C0 C1 C2 C3 C4 C5
0

10

20

30

40

50

60 inherent risk
residual risk

Fig. 4. Overview of the analysis results for the different changes.
This plot shows the resulting inherent and residual risk values in the example
application for each of the changes.

This results in a substantial reduction of both the inherent and
the residual risk. This corresponds with cell VII in Table I.

In future work, we plan to perform a more elaborate eval-
uation by providing reconstructed DFD models for historical
commits of an existing open-source application to support an
historical analysis of the threat modeling progress in mitigating
threats, construct a better picture on how security is considered
in practice, and verify the recovery of the presented risk
evolution patterns in a real-world application.

V. DISCUSSION

This section discusses the use of different threat analysis
engines, the need for a model that is consistent with the source
code of the system under consideration, how the approach
requires the construction of an explicit design model of the

6



system, and the suitability of different metrics to monitor the
evolution of a security architecture over time.

A. Threat elicitation engines
As discussed in Section III-A, the presented prototype is

built around the threat elicitation engine of SPARTA [26] be-
cause of its powerful enablers. Any alternative threat modeling
tool could in theory be adopted, provided that it generates
a list of threats, with, for every threat, (i) the threat type,
(ii) the affected DFD model element, (iii) the data flow, and
(iv) the inherent (i.e. risk if fully vulnerable) and residual risk
(i.e. risk assessment taking into account security and privacy
solutions) indications. For example, CTAM could be integrated
with Pytm [11] to elicit threats, provided that Pytm is extended
with (i) a risk estimation approach, such as FAIR [29], or (more
pragmatically) a translation of its current severity categories
to numerical values; and (ii) the possibility to elicit threats
that have been mitigated by a solution, to ensure that these
can be taken into account when tracking the progress that is
being made. This would, however, still lack SPARTA’s support
for security and privacy solutions and its detailed risk analysis
breakdown (see Section V-C).

B. Input DFD model accuracy
As discussed above, the current version of CTAM is predi-

cated upon the inclusion of an input DFD model in the code
base that is kept up to date with the different commits and
is gradually updated throughout the development activities. In
case this model deviates (e.g., as a consequence of architec-
tural drift [30]) from reality, the usefulness of the presented
approach decreases drastically, as not all the generated threats
will be relevant (false positives), or not all the relevant threats
will be identified (false negatives). Additionally, the modifica-
tions in a single commit may not always necessitate changes
to the model itself, as this depends on the granularity of the
commits. There are opportunities, however, to systematically
revisit the accuracy of the model as part of, for example, merge
requests that introduce more considerable changes.

While the above argument applies to any threat modeling
approach, the integration of these threat analysis activities
into the code versioning system presents two opportunities
for improvements in this regard. First, existing techniques
of architectural reconstruction can prove useful to ensure
or validate the accuracy of the input model vis-a-vis the
committed code. Software reflexion models [31], [32], for
example, could be used to automatically inform stakeholders
when source code changes deviate significantly from the
system model. Second, code-oriented threat modeling tools,
such as ThreatSpec [10], that rely on code annotations for the
construction of the input model, can remove the need for a
separate centralized input model altogether. In future research,
we hope to achieve a tighter integration between the threat
modeling information and the corresponding source code.

C. Supported threat analysis activities
As demonstrated in Section IV, CTAM provides immediate

feedback on the progress being made in creating a secure and

privacy-preserving design in terms of the inherent risk and the
residual risk which are both aggregated results. These values
are calculated and reported for each commit.

This degree of integration with version control systems
allows for a number of interesting analyses on the evolution of
a code base. For example, proposed changes in other branches
or merge/pull requests can be analyzed and compared with the
main branch to evaluate their security and privacy impact.

Because SPARTA performs a fine-grained risk assessment,
more detailed intermediary risk analysis results can be used
(e.g., the effectiveness of specific solutions, or the impact
on specific data subject types) instead of the aggregated risk
estimates per threat. This would allow the developer to perform
more targeted assessments, e.g., the analysis of privacy risk
from the perspective of a specific data subject type and its
evolution over time, or focused on specific assets (e.g., credit
card numbers or user data).

D. Security metrics

The systematic analysis and measurement of a software
product necessarily brings us to the domain of software secu-
rity metrics, a difficult, if not infeasible [33] endeavor. Despite
the inherent difficulties, many proposals have been made in
the literature to measure different security-relevant properties,
such as dependency graphs [34], attack surfaces [35], and
software metrics [36]–[38]. While the risk assessments of the
elicited threats may not be suitable as a metric to compare
the security of different software products in absolute terms,
it does allow monitoring the progress that is being made
in securing one specific system throughout its development.
Furthermore, our prototype lays the groundwork and provides
a generic framework for future evaluation of, and experimen-
tation with, calculating and comparing different security or
privacy metrics over time.

VI. CONCLUSION

Threat analysis is commonly performed in a single-shot
operation, in the early stages of software development. Be-
cause of this, progress in threat mitigation is not actively
revisited and monitored throughout later development stages
such as the implementation and as the system evolves over
time. Furthermore, as changes are made to the system, the
originally anticipated threats may become obsolete while novel
threats remain undiscovered.

In this paper, we introduced CTAM, a continuous threat
analysis and management prototype that supports continuous
threat modeling and elicitation and integrates this activity
into a continuous integration pipeline in GitLab. By revisiting
threat analysis as new changes are pushed to the source code
repository, threat management becomes a continuous activity,
and the progress in mitigating threats (both in applying appro-
priate security and privacy solutions as in making changes to
existing functionality) can be more accurately monitored.

Integrating threat analysis activities in a continuous inte-
gration pipeline provides the following benefits. First, threat
management becomes a continuous concern, rather than a

7



single-shot analysis on an outdated version of the system.
Second, it provides guidance towards mitigating threats and
keeps track of the progress. Third, it creates the need to
maintain the architectural abstraction model of the system and
forces developers to reflect on the broader architectural impact
of their changes in terms of security and privacy.

REFERENCES

[1] K. Rindell, K. Bernsmed, and M. G. Jaatun, “Managing Security in
Software - Or: How I Learned to Stop Worrying and Manage the Security
Technical Debt,” in Proceedings of the 14th International Conference on
Availability, Reliability and Security (ARES’19). ACM, aug 2019, pp.
1–8.

[2] A. Shostack, “Experiences threat modeling at Microsoft,” in Modeling
Security Workshop. Dept. of Computing, Lancaster University, UK,
2008.

[3] ——, Threat Modeling: Designing for Security. Indianapolis, Indiana:
John Wiley & Sons, 2014.

[4] M. Deng, K. Wuyts, R. Scandariato, B. Preneel, and W. Joosen,
“A privacy threat analysis framework: Supporting the elicitation and
fulfillment of privacy requirements,” Requirements Engineering, vol. 16,
no. 1, pp. 3–32, 2011.

[5] K. Wuyts, “Privacy Threats in Software Architectures,” PhD Thesis, KU
Leuven, Jan. 2015.

[6] K. Yskout, T. Heyman, D. Van Landuyt, L. Sion, K. Wuyts,
and W. Joosen, “Threat modeling: from infancy to maturity,” in
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: New Ideas and Emerging Results. ACM, jun
2020, pp. 9–12. [Online]. Available: https://dl.acm.org/doi/10.1145/
3377816.3381741

[7] K. Tuma, C. Sandberg, U. Thorsson, M. Widman, T. Herpel, and
R. Scandariato, “Finding security threats that matter: Two industrial case
studies,” Journal of Systems and Software, p. 111003, May 2021.

[8] IriusRisk, “IriusRisk,” 2021, https://www.iriusrisk.com/.
[9] Audodesk, “Autodesk Continuous Threat Modeling,” 2021, https://

github.com/Autodesk/continuous-threat-modeling/.
[10] ThreatSpec, “ThreatSpec,” 2021, https://threatspec.org/.
[11] I. Tarandach, “Pytm,” 2021, https://github.com/izar/pytm.
[12] L. Sion, K. Yskout, D. Van Landuyt, and W. Joosen, “Solution-aware

Data Flow Diagrams for Security Threat Modelling,” in Proceedings
of The 6th Track on Software Architecture: Theory, Technology, and
Applications, 2018.

[13] L. Sion, K. Wuyts, K. Yskout, D. Van Landuyt, and W. Joosen,
“Interaction-based Privacy Threat Elicitation,” in Proceedings of the 4th
International Workshop on Privacy Engineering – IWPE 2018. IEEE,
2018.

[14] Christian Schneider, “Threagile,” 2021, https://threagile.io/.
[15] OWASP, “Threat Dragon,” 2021, https://owasp.org/

www-project-threat-dragon/.
[16] O. Javed, J. H. Dawes, M. Han, G. Franzoni, A. Pfeiffer, G. Reger, and

W. Binder, “PerfCI: a toolchain for automated performance testing dur-
ing continuous integration of Python projects,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2020, pp. 1344–1348.

[17] C. Vassallo, S. Proksch, A. Jancso, H. C. Gall, and M. Di Penta,
“Configuration smells in continuous delivery pipelines: a linter and a six-
month study on gitlab,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 327–337.

[18] R. Kozik, M. Choraś, D. Puchalski, and R. Renk, “Platform for software
quality and dependability data analysis,” in International Conference on
Dependability and Complex Systems. Springer, 2018, pp. 306–315.

[19] S. T. Datko, “Static code analysis with gitlab-ci,” Tech. Rep., 2016.
[20] G. B. Simpson, “CI/CD Software Security Automation,” Sandia National

Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2018.
[21] T. Rangnau, R. v. Buijtenen, F. Fransen, and F. Turkmen, “Continuous

security testing: A case study on integrating dynamic security testing
tools in ci/cd pipelines,” in 2020 IEEE 24th International Enterprise
Distributed Object Computing Conference (EDOC), 2020, pp. 145–154.

[22] L. Sion, D. Van Landuyt, and W. Joosen, “The never-ending story:
On the need for continuous privacy impact assessment,” in 2020 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW).
IEEE, 2020, pp. 314–317.

[23] D. Van Landuyt, L. Pasquale, L. Sion, and W. Joosen, “Threat models
at run time: the case for reflective and adaptive threat management (nier
track),” 2021.

[24] Z. Braiterman, A. Shostack, J. Marcil, S. de de Vries, I. Michlin,
K. Wuyts, R. Hurlbut, B. S. Schoenfield, F. Scott, M. Coles, C. Romeo,
A. Miller, I. Tarandach, A. Douglen, and M. French, “Threat Modeling
Manifesto,” https://www.threatmodelingmanifesto.org/, Nov. 2020.

[25] GitLab, “GitLab CI/CD,” 2021, https://docs.gitlab.com/ee/ci/.
[26] L. Sion, D. Van Landuyt, K. Yskout, and W. Joosen, “SPARTA: Security

& privacy architecture through risk-driven threat assessment,” in IEEE
2018 International Conference on Software Architecture (ICSA 2018),
IEEE. IEEE, 2018, [freely.

[27] L. Sion, K. Yskout, D. Van Landuyt, and W. Joosen, “Risk-based Design
Security Analysis,” in Proceedings - 2018 IEEE/ACM First International
Workshop on Security Awareness from Design to Deployment, SEAD
2018, Gothenburg, Sweden, 2018.

[28] L. Sion, D. Van Landuyt, K. Wuyts, and W. Joosen, “Privacy risk
assessment for data subject-aware threat modeling,” in 2019 IEEE
Security and Privacy Workshops (SPW). IEEE, 2019.

[29] J. Freund and J. Jones, Measuring and Managing Information Risk: A
FAIR Approach. Butterworth-Heinemann, 2014.

[30] B. Tekinerdogan, “Architectural drift analysis using architecture reflex-
ion viewpoint and design structure reflexion matrices,” in Software
Quality Assurance. Elsevier, 2016, pp. 221–236.

[31] G. Murphy, D. Notkin, and K. Sullivan, “Software Reflexion Models:
Bridging the Gap between Design and Implementation,” IEEE Transac-
tions on Software Engineering, vol. 27, pp. 364 – 380, 05 2001.

[32] J. Buckley, S. Mooney, J. Rosik, and N. Ali, “Jittac: A just-in-time tool
for architectural consistency,” in 2013 35th International Conference on
Software Engineering (ICSE), 2013, pp. 1291–1294.

[33] S. Bellovin, “On the brittleness of software and the infeasibility of
security metrics,” IEEE Security and Privacy, vol. 4, no. 4, pp. 96–96,
Jul. 2006.

[34] V. H. Nguyen and L. M. S. Tran, “Predicting vulnerable software compo-
nents with dependency graphs,” in Proceedings of the 6th International
Workshop on Security Measurements and Metrics, ser. MetriSec ’10.
New York, NY, USA: Association for Computing Machinery, 2010.

[35] P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE
Transactions on Software Engineering, vol. 37, no. 3, pp. 371–386, May
2011.

[36] M. Lanza and S. Ducasse, “Understanding software evolution using
a combination of software visualization and software metrics,” in In
Proceedings of LMO 2002 (Langages et Modèles à Objets. Lavoisier,
2002, pp. 135–149.

[37] T. Mens and S. Demeyer, “Future trends in software evolution metrics,”
in Proceedings of the 4th International Workshop on Principles of
Software Evolution, ser. IWPSE ’01. New York, NY, USA: Association
for Computing Machinery, 2001, pp. 83–86.

[38] N. Medeiros, N. Ivaki, P. Costa, and M. Vieira, “Software metrics as
indicators of security vulnerabilities,” in 2017 IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE), Oct. 2017, pp.
216–227.

8

https://dl.acm.org/doi/10.1145/3377816.3381741
https://dl.acm.org/doi/10.1145/3377816.3381741
https://www.iriusrisk.com/
https://github.com/Autodesk/continuous-threat-modeling/
https://github.com/Autodesk/continuous-threat-modeling/
https://threatspec.org/
https://github.com/izar/pytm
https://threagile.io/
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-threat-dragon/
https://www.threatmodelingmanifesto.org/
https://docs.gitlab.com/ee/ci/
[freely

	Introduction
	Related Work
	Threat modeling support during development
	Quality assessment in continuous integration pipelines

	Continuous Threat Analysis & Management
	Threat analysis engine
	Server
	Analysis

	Functional Validation
	Description of the case
	Change scenarios
	Results

	Discussion
	Threat elicitation engines
	Input DFD model accuracy
	Supported threat analysis activities
	Security metrics

	Conclusion
	References

