
Threat models at run time: the case for reflective
and adaptive threat management (NIER track)

Dimitri Van Landuyt
imec-DistriNet, Department of
Computer Science, KU Leuven

Heverlee, Belgium
dimitri.vanlanduyt@cs.kuleuven.be

Liliana Pasquale
School of Computer Science
University College Dublin

Dublin, Ireland
liliana.pasquale@ucd.ie

Laurens Sion, Wouter Joosen
imec-DistriNet, Department of
Computer Science, KU Leuven

Heverlee, Belgium
firstname.lastname@cs.kuleuven.be

Abstract—Threat modeling is an analysis activity aimed at
eliciting viable and realistic security and privacy threats in the
design of a software-intensive system. Threat modeling allows for
a by-design approach, mitigating problems before they arise and
avoiding later costly development efforts.

However, it mainly pays off in software construction ap-
proaches that rely on planned architectures, in which sources
of threats can be anticipated beforehand. These axiomatic as-
sumptions are, however, increasingly untrue in contemporary
software development practices in which software systems evolve
drastically in later stages. In addition, software-intensive systems
are increasingly faced with uncertainty in their operational
contexts, and these are nearly impossible to enumerate in early
development stages.

In this article, we first present the idea of reflective threat mod-
eling, which involves the automated derivation of architectural
system models from run-time and operational system artifacts,
providing the threat modeler with an accurate and workable
run-time inspection view of the system. We then outline and
motivate the potential of adopting threat analysis models as
a basis for holistic and adaptive threat management through
integration of adaptive security and privacy technologies. This
will enable systems to autonomously respond to emerging threats
by dynamically activating dedicated controls or via run-time
reconfiguration.

Index Terms—Threat modeling, threat analysis, threat man-
agement, security, privacy, run-time reflection, architecture-
centric adaptation

I. INTRODUCTION

Threat modeling [1], [2] involves the systematic analysis
of potential security and privacy threats in the context of
a specific system under design. It is considered an impor-
tant cornerstone in the secure software development life-
cycle (SDLC) [1], and it contributes to attaining the widely-
advocated principles of security and privacy by design: instead
of addressing problems and issues whenever they arise, a
proactive and thorough assessment of security and privacy
requirements in the early development stages will avoid costly,
invasive engineering activities in later development stages.

Current threat modeling approaches [3], [4] are heavily
shaped by their role in the development life-cycle: (i) they
are to be performed manually, by analysts/requirement engi-
neers in a workshop/brainstorm setting, (ii) they act upon an
abstraction model of the system under analysis (such as Data
Flow Diagrams (DFDs)) that is created in isolation and thus

decoupled from implementation or run-time artifacts, (iii) they
involve manual risk assessment which involves estimation of
risk factors that both cannot be assessed precisely and quantita-
tively beforehand, and which rely on implicit information and
background system knowledge1, and (iv) if they also include
support for selecting appropriate mitigations, threat modeling
approaches mainly focus on design-level proactive mitigations
such as architectural security or privacy design patterns [6],
[7], design strategies and architectural tactics [8], [9].

While existing threat modeling approaches are suited for
determining the most relevant security and privacy threats in
an a-priori, constructive context, their disconnect from further
software development activities and the operational context
of software-intensive systems has a number of significant
disadvantages. In practice, when threat modeling is conducted,
it is done as a one-shot operation, and the analysis is rarely
revised in later development stages as it is perceived too time-
consuming and costly.

In this article, we provide an in-depth discussion about what
is required to integrate threat modeling and threat analysis into
the operational context of a system, in two incremental steps.

In a first step, we discuss the opportunities and chal-
lenges related to the automated construction of system models
through reflection and inspection, an approach that we call
‘reflective threat modeling’. We envision the (semi-)automated
derivation of integrated and rich input models in which differ-
ent threat sources such as design flaws, vulnerabilities, and
actual incidents can be distinguished and potential threats
enumerated and assessed. These inputs models are architec-
tural in the sense that they distinguish explicitly between
system design structure, deployment, and run-time events and
interactions.

In a second step, we discuss the possibilities and challenges
related to implementing ‘adaptive threat management’, in
which the system itself performs automated threat analysis to
identify emerging threats (e.g., when the system or its environ-
mental context has drastically changed), and makes decisions

1For example, to assess the likelihood of a certain threat, the threat modeler
must consider aspects such as attacker incentives and capabilities, the trust
relations to third parties, the perceived strength of existing countermeasures,
etc. In threat modeling practice, these elements and such rationale are kept
implicit [5].

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

1

to proactively or reactively address threats, for example by
employing adaptive security and privacy technologies [10]–
[12] or enacting run-time system reconfigurations.

While approaches and technologies to adaptive security
and risk assessment enjoy practical adoption [10], [13], they
address specific threat types (e.g., focusing exclusively on
fraud, anomaly or intrusion), and lack the holistic end-to-end
system perspective that is inherent to threat modeling. As such,
they are not suited for monitoring threat and risk evolutions
across wider threat landscapes.

This article is structured as follows: Section II presents
the necessary background, whereas Section III motivates this
work. Next, Section IV and Section V respectively propose and
discuss the research challenges of reflective threat modeling
and adaptive threat modeling. Finally, Section VI concludes.

II. BACKGROUND

This section provides background information on threat
modeling, on the integration of security in a development
and operations context (SecDevOps), and on adaptive security
approaches and enabling technologies.

A. Threat modeling

Threat modeling approaches have emerged in the early
2000s [1] as a means to systematically identify and evaluate se-
curity requirements. The most prominent elicitation approach
is Microsoft’s STRIDE [2], yet different survey studies [3], [4],
[14] show the range of available threat modeling approaches.
Recently, the Threat Modeling Manifesto [15] was established
to create a common understanding among practitioners and to
articulate the core values and principles of threat modeling.

Figure 1 provides a generic overview of the different activ-
ities involved in threat modeling, starting from (activity 1) the
establishment of an abstraction model of the system. Based
on this, (activity 2) systematic threat elicitation approaches
involve enumerating all theoretically viable threats, based upon
reusable threat taxonomies, trees, vulnerability databases, or
threat categories. As this step leads to large bodies of threats
to be investigated, the subsequent step (activity 3) involves
prioritizing and filtering, by determining which threats pose
a significant risk to the system. For this, risk assessment
models (e.g., FAIR [16]) can be applied [17] that take into
account a wide array of risk components. Finally, for the most
critical threats, countermeasures can be selected to mitigate the
identified threats (activity 4).

Threat modeling has been successfully adopted in a wide
variety of application domains, in cyber-physical systems
(CPS) [18], automotive and mobility systems [19]–[22], large-
scale enterprise environments [23]–[25], e-health systems [26]
and even to validate the complex privacy-preserving architec-
tures that are used in COVID-19 exposure tracking and contact
tracing systems [27].

While DFDs [1], [2] are the most common system represen-
tations, there is in effect a wide range of system abstractions
used in the context of threat modeling (e.g., Process Flow

1. model the
system

<manual>

2. elicit threats
<automated>

3. assess and
prioritize
threats

<automated>

4. proactive
threat

mitigation
<manual>

Threat
taxonomies

PROCESS
ACTIVITIES

KNOWLEDGE
BASE

OUTPUT
ARTIFACTS

Pattern catalogs,
tactics,

mitigation strategies
Risk models

Data Flow Diagram

 process
external

entity

data
store

data
flow

Threat: T01
Information
Disclosure

Threat documentation

Threat: T01
Information
Disclosure
Prio: high
Risk: 0.57

Security &
privacy architecture

Threat ranking

Fig. 1. The four core activities involved in threat modeling, with their inputs
and outputs. Here depicted is a DFD-based approach which involves explicit
threat documentation and risk-based prioritization.

Diagrams [28], Information Flow Diagrams [27], DFD exten-
sions [29]–[31]), or tool-specific representations [32]. For a
more elaborate coverage of different secure design notations,
we refer the reader to the literature [33].

Threat modeling is predominantly a manual task [15], [22]
and in practice is used in the context of (i) educating and
raising awareness about threats and common threat sources,
(ii) increasing confidence in system concepts and early ar-
chitectures, and (iii) performing fine-grained analysis at the
level of DFD elements or interactions. Due to its heavy
reliance on manual effort and the required degree of expertise,
continuous threat modeling or frequent iteration of threat
analysis activities are considered cost-inefficient [34].

Recently, advances have been made towards automation of
threat modeling and threat analysis activities [3]. These efforts
are focused on automated threat elicitation (activity 2) and
automated threat prioritization and risk assessment (activity
3), e.g., as in SPARTA [30] and the work of Tuma et al. [29].
In addition, complementary attempts to bring threat modeling
closer to the implementation phase have led to approaches such
as pytm [35], with a code-based model, and threatspec [36],
which allows developers to include annotations in code, from
which system models can be derived for threat analysis.

B. SecDevOps

DevOps refers to the tight integration of development activ-
ities with the operational management of systems [37] and is
associated with practices of agile development and continuous
integration and deployment (CI/CD). These techniques involve
extensive process automation, for example by embedding test-
ing activities in production environments, quality assurance,
automated and fine-grained deployment of individual updates
or product features. By informing development activities with
metrics and results obtained in a production or operational
environment, problems can be identified and prioritized more
accurately, and the time windows of iterative development can
be shortened substantially.

Secured DevOps or SecDevOps [38], [39] involves dealing
with novel cyber security risk that emerge in the DevOps
context. In its strictest interpretation, it refers to addressing
the security implications caused by automated and frequent
deployment [40], for example by properly configuring the

2

target environment such as securing containers or virtual
machines [41]. In other work, it is also used to refer to the
integration of automated security development and operational
practices into the actual CI/CD cycles, e.g., integration of
automated security testing or scanning tools [42], [43].

C. Adaptive security and privacy

Approaches that are adaptive in nature are capable of
identifying security- or privacy-related issues and reacting
appropriately [10], [11], [11]–[13], [44]. Without aiming for
exhaustiveness, the term refers to technology classes such
as: adaptive firewalls [45], [46], adaptive incident or intrusion
detection systems (IDS) [47], [48], adaptive fraud detection
systems [49], [50], adaptive cryptography, and adaptive access
control systems [51], [52].

For example, when an access request comes from outside of
the corporate network or from a new device, an adaptive access
control system can decide to require two-factor authentication,
or when there is uncertainty about the credentials of a user,
the adaptive system can decide to ask for extra credentials,
such as biometric identifiers.

Other technology classes of relevance are not uniquely
dedicated to security or privacy but represent key enablers for
implementing and enacting of adaptations in a more generic
sense. These include technologies such as virtualization, dy-
namic container orchestration [53], [54], software-defined net-
working (SDN), and policy enactment frameworks [55].

III. MOTIVATING CASE: MARITIME SYSTEM

Figure 2 presents a (strongly simplified) DFD of the system
architecture of a maritime system, more specifically with
emphasis on the communication subsystems deployed on a
vessel used for navigation, management, and interaction with
external systems (e.g., tracking of shipping containers).

GPS
comms

Ship/fleet
Mgmt

Satellite

Crew

Electronic Chart
Display and

Information System
(ECDIS)

at harbor near shore/in vicinity of other vessels in open sea

process

external entity

trust boundary

DFD legend

data flow

Color legend

VESSEL

Container
 Logistics

Remote
control

Galileo
comms

 GPS
comms

Navigation
 control
 systems

Automatic
Identification
System (AIS)

Search and rescue
transceiver (SART)

AIS Base station
Aids to navigation

 Port mgmt
System (PMS)

Fig. 2. A DFD of a maritime system, showing the subsystems deployed on
a vessel for navigation, management, and interaction with external entities.

Adopting threat elicitation approaches at the basis of the
depicted DFD will yield a number of possible and relevant
system threats, for example the threat of a malicious agent
deliberately steering the vessel off course by tampering with
the satellite communications or by spoofing the on-shore
management systems to which the vessel remains in contact.

However, the different threats and their risk profiles (like-
lihood and impact) will in reality depend strongly on the
operational context of the system. For example, the attack

surface that involves access via Port Management Systems
(e.g., the Information Disclosure threat that involves a third
party that wants to identify specific containers in the cargo
in, for example, smuggling scenarios) only becomes relevant
when the vessel is docked, whereas such threats are not
applicable when the vessel is in open sea. Conversely, the
threat of a malignant external entity falsely emitting distress
signals via the Search and Rescue Transmission Systems
(SART) to deviate the vessel (a spoofing threat) will not be
applicable when the vessel is docked.

When performing threat analysis in an a-priori design
context, the analyst is required to enumerate and anticipate
the different operational contexts of the system, and as these
contexts may change significantly over time (as in the moti-
vating example), so will the corresponding threat landscapes.
This is especially problematic in systems for which exhaustive
enumeration of these operational context is cumbersome or
even infeasible, and as a consequence, relevant threats may
not be identified, prioritized nor mitigated correctly.

In addition, when the system itself changes or evolves
over time, novel threats will not be identified nor mitigated
unless the entire threat analysis exercise is repeated. Change
scenarios are: new subsystems are activated that were not
initially present in the analysis (e.g., the installation of on-deck
wireless networks to enable personal communication of crew
members), when new external entities emerge (e.g., new means
to communicate to base stations, or new types of base stations),
or simply, as the capabilities of attackers evolve over type
(e.g., new vulnerabilities have been published or new types
of attacks have been detected) so that threat types that were
previously considered impossible have become actual issues.

IV. REFLECTIVE THREAT MODELING

In this section, we motivate and outline a first necessary
innovation in threat modeling related to how the system
models that are used as the basis for threat analysis are
obtained. Our motivation is based on two key problems with
the current state of the art: (i) system models used in threat
modeling lack expressiveness, (ii) system models created in
early stages only convey design information which can become
outdated once the system is in operation. We elaborate on both
problems below.

a) Lacking expressiveness in system models: Data flow
(DFDs) modeling involves a relatively simple and intuitive
notation consisting of only five element types (processes, data
stores, external entities, data flows and trust boundaries). The
simplicity ensures easy adoption by diverse stakeholders and
as such facilitates the creation of DFDs in workshop settings.
The downside however is that it leads to system models that
easily omit relevant information, e.g., DFD models typically
model data flows but omit how exchanged information is
encoded or which communication protocols are used. In ad-
dition, it leads to overloading of element types in terms of
the type of system information that is conveyed. For example,
a trust boundary may represent an organizational boundary,
a communication boundary, a security control boundary, or a

3

physical boundary, but it may also be used to delineate a unit
of computation (a system component), or a logical grouping
of elements (e.g., to represent system elements deployed in a
virtualized environment such as a distributed cloud).

The correct interpretation of DFD elements2 as such de-
pends heavily on human disambiguation.

b) Low accuracy of system models: When threat mod-
eling is performed in the early stages of requirements engi-
neering, the system model is prescriptive in nature, i.e. it is
indicative of how the system is expected to be materialized, but
in practice, such a holistic view on the system is incomplete in
these stages, especially in contemporary development practices
that involve drastic and continuous evolution. When relying
exclusively on early models, the final product often deviates
(or has evolved drastically away) from the planned system.

A. Concept

In the core concept of reflective threat modeling, we advo-
cate extensively relying on methods and techniques that in-
volve automated derivation of more expressive system models
that leverage this information to create and maintain accurate
and rich system models.

These system models are architectural in nature, in the
sense that they encode information of distinct architectural
viewpoints. We adopt the classification in viewpoints of Bass
et al. [8] in terms of (1) a module view, (2) an allocation
or deployment view, and (3) a process or client-server view,
which we consider a valuable distinction to differentiate be-
tween design flaws, physical and infrastructural attacks, and
run-time incidents respectively.
• Module views represent the design and development struc-

ture of a system. Contemporary practice is increasingly
based on expressive models that encode a wealth of infor-
mation about design structure and remain accessible at run
time. Some examples are: data model or schema specifica-
tions, workflow descriptions or business process specifica-
tions. These can be complemented with techniques of static
code analysis (e.g., dependency analysis) and the dedicated
annotation-based approaches discussed above [35], [36].
Finally, methods of software architecture reconstruction
(SAR) [56], [57] also take into account other development
artifacts, such as code comments, information drawn from
versioning systems, etc. to retroactively derive the develop-
ment structure of the system.

• Deployment and allocation views: Distributed systems
commonly rely on middleware platforms that require devel-
opers to define deployment abstractions (e.g., applications,
(micro-)services), and this is the level of granularity at
which distributed applications are deployed. This infor-
mation is available through reflection and via platform-
specific deployment descriptors. In addition, virtualization
and orchestration systems [58], [59] employ techniques
such as Software-defined networking (SDN) [60], [61] and

2While we focus predominantly on the DFD notation in the above for the
sake of simplicity in the argumentation, the same applies to different design
notations such as those discussed in Section II-A.

involve expressive deployment descriptors from which valu-
able deployment information can be obtained.

• Client-server/process views represent run-time interac-
tions, for example between active objects, threads and pro-
cesses. These views contribute information about frequency
of interactions, provide concrete examples of data elements
being processed, run-time user sessions, etc. The construc-
tion of these views can leverage upon information provided
in audit trails, system logs and session management, but also
may rely on dynamic analysis of application execution (e.g.,
based on call graphs to identify run-time interactions, or
taint analysis [62]). In addition, intrusion or fraud detection
systems are capable of detecting security incidents in an
operational system, and these represent threat instances that
may trigger system-wide threat re-evaluation.

B. Research agenda

We define an approach that leverages the aforementioned
sources of architectural information to construct or refine
system models as a reflective threat modeling approach and
discuss the required innovations and main research challenges.
• Architecture description languages We argue that data-

flow-centric abstractions (DFDs) lack the expressiveness to
document and maintain the architectural distinction between
(i) design structure, (ii) run-time interactions, and (iii) de-
ployment configurations. As such, we envision adopting
or tailoring existing software architecture specification or
description languages [63], [64] for the specific purpose of
threat analysis, as these allow defining a system from multi-
ple orthogonal and complementary viewpoints [65]. A first
problem inherent to adopting more expressive architectural
models is related to internal consistency, i.e. ensuring that
different views on the system remain consistent [66].

• Heterogeneity of architectural information sources. The
potential information sources listed above are heterogeneous
in terms of (i) the type of architectural information pro-
vided, (ii) their technology context, (iii) how accessible
they will be through run-time reflection and inspection. To
deal with heterogeneity, we envision a reflection framework
that is extensible and capable of integrating these different
sources into a comprehensive and complete system model.
Also required are facilities to assess the extent to which
automatically-generated system models can be considered
complete or suited for the purpose of threat analysis.

• Derivation logic. Casting the obtained system information
obtained via system inspection and reflection into abstrac-
tions suited for threat analysis is not straightforward, not
in the least because these target abstractions are not yet
well-known or -understood. From a technical perspective,
dedicated translation mechanisms and algorithms will be
required to raise the level of abstraction or granularity,
e.g., by employing clustering algorithms in call or execu-
tion graphs obtained through system inspection to identify
more coarse grained ‘components’ or ‘processes’. Model-
to-model transformation techniques [67] will be required to
select and convert the relevant system information encoded

4

in descriptors and domain-specific languages into the target
abstractions. Although these mechanisms will be heteroge-
neous in nature, they should all contribute to a coherent
system model that serves as an appropriate input for system-
centric threat analysis.

• Systemic impact of reflection and inspection. Continuous
inspection and reflection is costly in terms of system per-
formance and the operational disruption of extensive mon-
itoring and inspection systems becomes prohibitive [68].
As such, we argue that an approach that involves gradual
and event-based co-evolution of the reflection system model
(a digital twin) in parallel with the operational distributed
system will be most realistically feasible. However, prop-
agating run-time events and changes between a run-time
system and its model-based representation from a variety of
sources (run-time state and interactions, versioning systems,
software updates, etc.), is a non-trivial problem, for three
main reasons: (i) divergence has to be avoided between
the run-time state of the system and the model, (ii) the
constraints of large-scale distributed systems such as par-
tition tolerance and lack of global time synchronization
have to be taken into account, (iii) when the distance
between the source abstractions and targets abstractions is
substantial [68] translations become complex, difficult to
engineer, and verify.

V. A HOLISTIC ADAPTIVE THREAT MANAGEMENT
PERSPECTIVE

Traditional threat modeling approaches are mainly used in a
constructive, by-design context, and these approaches support
design-centric decision-making in the sense that they offer
guidance towards addressing identified threats in design or de-
velopment. For example, Shostack advocates tight integration
with security testing and validation approaches and emphasizes
overall quality assurance [2], whereas LINDDUN [5] provides
taxonomies of architectural patterns and strategies for privacy.

These are less relevant in an operational context, as it is
impossible to switch between architectural tactics or design
strategies at run time. As such, the key challenge is to mitigate
emerging threats by instrumenting and dynamically adapting
operational systems.

Security or privacy mitigations always incur a cost and
involve essential trade-offs with other system concerns. For
example, extensive authentication reduces the usability of a
system and an approach to encrypt all communications will
incur higher resource consumption (bandwidth, processing
power) and increase architectural complexity (e.g., for crypto-
graphic key management). Instead of incurring such costs by
default (e.g., enforcing multi-factor authentication by default),
adaptive security approaches and techniques have the intrinsic
capability to change according to the system’s needs.

For example, when there is uncertainty about the credentials
of a user, the system could dynamically decide to ask for extra
credentials (adaptive access control). Or, when the system
detects that it is near untrusted devices and thus its attack
surface increases, it could dynamically reconfigure its security

controls. For example, the maritime system could switch
to stronger encryption mechanisms for communication when
docked in a port but use weaker mechanisms at plain sea
(through adaptive cryptography).

A. Concept

We envision an approach in which the threat analysis model
becomes the cornerstone of a threat management framework
which is capable of installing, activating, and reconfiguring a
wide range of adaptive security technologies, such as those
described in Section II-C, a concept that we refer to as
‘adaptive threat management’.

As the main advantage, such a holistic analysis framework
will maintain an end-to-end system perspective in terms of
the different threats that may emerge over time, and it can
reason about and decide upon mitigations and reconfigurations
in terms of their expected implications on the entire threat
landscape. These mitigations may both be preventive and
reactive in nature.

2. elicit threats
<automated>

3. assess and
prioritize
threats

<automated>

4. proactive
threat

mitigation
<manual>

Threat
taxonomies

Pattern catalogs,
tactics,

mitigation strategies
Risk models

Threat: T01
Information
Disclosure

Threat: T01
Information
Disclosure
Prio: high
Risk: 0.57

Security &
privacy architecture

1. system model
derivation
<automated>

Derivation logic;
Inspection systems

System architecture
reflection

model

PROCESS
ACTIVITIES

KNOWLEDGE
BASE

OUTPUT
ARTIFACTS

Threat documentation Threat ranking

Fig. 3. Graphical depiction of the proposed adaptive threat modeling
approach, in which the threat model is used to embed and steer system-
wide adaptations of adaptive security techniques, by dynamically activating
or tuning such approaches (required innovations highlighted in black).

B. Research agenda

The proposed approach of adaptive threat management
builds upon the vision of automated reflective threat modeling
presented in Section IV, in which the threat model itself acts
as the analysis model from which reconfiguration actions can
be motivated:
• Engineering a base platform. Approaches to determine

common framework requirements for the purpose of estab-
lishing a system base architecture that integrates a sufficient
set of adaptive security and privacy controls to enable
mitigation of the most plausible threats that will emerge
in the context of the system are required.

• System model. An additional challenge is related to find-
ing a representation of these adaptive technologies in the
system model, in such a way that the model can be used
both for analysis (e.g., for what-if analysis to estimate the
impact of potential reconfiguration actions) and to steer and
orchestrate actual reconfigurations.

• Risk events: Recognition of conditions in which risk
significantly changes, at the basis of observed run-time
events (e.g., vicinity of new entities, new data types being

5

processed, . . .) requires new threat taxonomies (in which
a threat type not only refers to a design flaw or a design
weakness but also to vulnerabilities and incidents) and novel
risk models and dedicated approaches that act at the level
of these run-time events.

• Technical integration: Allowing the threat management
framework to activate or tune specific security controls in
response to identified threat and problems raised by analysis
of individual events (reactive threat mitigation instead of
proactive) requires access to these enabling technologies
(e.g., orchestration or policy systems such as those described
in Section II-C).

• Novel threats: Establishing an adaptive threat management
framework that (semi-)autonomously reconfigures the sys-
tem at the basis of its internal threat analysis results itself
opens up a entirely novel attack surface. Especially when the
system is capable of reconfiguration actions (e.g., lowering
defenses), malicious entities will be strongly incentivized to
gain access and manipulate these models and reconfiguration
facilities.

VI. CONCLUSION

In a model-based analysis activity, the quality of the inputs
greatly impacts the overall effectiveness. This is certainly true
for threat modeling: when performing a threat analysis activity
at the basis of system model that is outdated, incomplete,
ambiguous or inaccurate, relevant security and privacy threats
may not be recognized (low recall), or conversely, the reported
threats will not be realistic (low precision). In addition, threat
modeling approaches currently focus on design-level threats
and are less suited to identify threats that emerge at run time,
i.e. as the operational context of a system changes.

2. elicit threats
<automated>

3. assess and
prioritize
threats

<automated>

4. reactive
threat

mitigation
<automated>

Threat
taxonomies

Adaptive security
and privacy
approaches

Risk models

Threat: T01
Information
Disclosure

Threat: T01
Information
Disclosure
Prio: high
Risk: 0.57

Adaptive
Security &

Privacy
architecture

1. system model
derivation
<automated>

Derivation logic;
Inspection systems

System architecture
reflection

model

PROCESS
ACTIVITIES

KNOWLEDGE
BASE

OUTPUT
ARTIFACTS

Threat documentation Threat ranking

Fig. 4. Graphical depiction of the proposed threat modeling innovations (in
black), in which (i) the system model is constructed through system reflection,
and (ii) the analysis model is used to express and enact system security-
oriented adaptations.

To alleviate these shortcomings, we explore and discuss
the requirements and research challenges related to adopting
more expressive system models, the construction of which
is automated by means of system inspection and monitoring,
in a novel threat modeling approach called ‘reflective threat
modeling’. We complement this approach with a vision on how
this can lead to integration of adaptive security and privacy
technologies, which are then controlled and informed from this

threat-centric perspective, an approach we refer to as ‘adaptive
threat management’.

This vision aligns well with the canonical MAPE ar-
chitecture for constructing self-adaptive systems [69], [70],
which involves monitoring the system, performing analysis
and planning, and enacting changes at the basis of dedicated
and concern-specific analysis models. In that regard, this
article discusses and considers the feasibility of adopting
traditional threat modeling techniques for the main analysis
and planning in support of holistic self-adaptive security and
privacy approaches.

Acknowledgements. This research is partially funded by
the Research Fund KU Leuven, and also supported by the
European H2020-SU-ICT-03-2018 Project no. 830929 Cyber-
Sec4Europe (https://cybersec4europe.eu)

REFERENCES

[1] M. Howard and S. Lipner, The Security Development Lifecycle. Mi-
crosoft Press, 2006.

[2] A. Shostack, Threat Modeling: Designing for Security. Indianapolis,
Indiana: John Wiley & Sons, 2014.

[3] W. Xiong and R. Lagerström, “Threat modeling–a systematic literature
review,” Computers & security, vol. 84, pp. 53–69, 2019.

[4] N. Shevchenko, T. A. Chick, P. O’Riordan, T. P. Scanlon, and C. Woody,
“Threat modeling: a summary of available methods,” Carnegie Mellon
University Software Engineering Institute, Tech. Rep., 2018.

[5] D. Van Landuyt and W. Joosen, “A descriptive study of assumptions
made in LINDDUN privacy threat elicitation,” in Proceedings of the
35th Annual ACM Symposium on Applied Computing, 2020, pp. 1280–
1287.

[6] C. Steel, R. Nagappan, and R. Lai, Core Security Patterns: Best Pratices
and Strategies for J2EE, Web Services, and Identity Management.
Prentice Hall Ptr, 2005.

[7] E. Fernandez-Buglioni, Security patterns in practice: designing secure
architectures using software patterns. John Wiley & Sons, 2013.

[8] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012.

[9] M. Colesky, J.-H. Hoepman, and C. Hillen, “A critical analysis of privacy
design strategies,” in 2016 IEEE Security and Privacy Workshops, 2016.

[10] E. Yuan, N. Esfahani, and S. Malek, “A systematic survey of self-
protecting software systems,” ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 8, no. 4, pp. 1–41, 2014.

[11] I. Omoronyia, L. Cavallaro, M. Salehie, L. Pasquale, and B. Nuseibeh,
“Engineering adaptive privacy: on the role of privacy awareness require-
ments,” in 2013 35th International Conference on Software Engineering
(ICSE). IEEE, 2013, pp. 632–641.

[12] M. Salehie, L. Pasquale, I. Omoronyia, R. Ali, and B. Nuseibeh,
“Requirements-driven adaptive security: Protecting variable assets at
runtime,” in 2012 20th IEEE international requirements engineering
conference (RE). IEEE, 2012, pp. 111–120.

[13] G. Tziakouris, R. Bahsoon, and M. A. Babar, “A survey on self-adaptive
security for large-scale open environments,” ACM Computing Surveys
(CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[14] K. Tuma, G. Calikli, and R. Scandariato, “Threat analysis of software
systems: A systematic literature review,” Journal of Systems and Soft-
ware, vol. 144, pp. 275 – 294, 2018.

[15] Z. Braiterman, A. Shostack, J. Marcil, S. de Vries, I. Michlin, K. Wuyts,
R. Hurlbut, B. S. Schoenfield, F. Scott, M. Coles, C. Romeo, A. Miller,
I. Tarandach, A. Douglen, and M. French, “Threat modeling manifesto,”
http://www.threatmodelingmanifesto.org/, 2021.

[16] J. Freund and J. Jones, Measuring and managing information risk: a
FAIR approach. Butterworth-Heinemann, 2014.

[17] L. Sion, K. Yskout, D. Van Landuyt, and W. Joosen, “Risk-based design
security analysis,” in Proceedings of the 1st International Workshop on
Security Awareness from Design to Deployment. ACM, 2018, p. 11–18.

[18] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “STRIDE-based
threat modeling for cyber-physical systems,” in IEEE PES Innovative
Smart Grid Technologies Conference Europe, 2017.

6

https://cybersec4europe.eu
http://www.threatmodelingmanifesto.org/

[19] A. Karahasanovic, P. Kleberger, and M. Almgren, “Adapting threat
modeling methods for the automotive industry,” in Proceedings of the
15th ESCAR Conference, 2017, pp. 1–10.

[20] A. Almulhem, “Threat modeling of a multi-uav system,” Transportation
Research Part A: Policy and Practice, vol. 142, pp. 290–295, 2020.

[21] Z. Ma and C. Schmittner, “Threat modeling for automotive security
analysis,” Advanced Science and Technology Letters, vol. 139, 2016.

[22] W. Xiong, F. Krantz, and R. Lagerström, “Threat modeling and attack
simulations of connected vehicles: Proof of concept,” in International
Conference on Information Systems Security and Privacy, 2019.

[23] R. Stevens, D. Votipka, E. M. Redmiles, C. Ahern, P. Sweeney, and
M. L. Mazurek, “The battle for New York: a case study of applied
digital threat modeling at the enterprise level,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 621–637.

[24] C. Möckel and A. E. Abdallah, “Threat modeling approaches and tools
for securing architectural designs of an e-banking application,” in Sixth
International Conference on Information Assurance and Security, 2010.

[25] A. Yeboah-Ofori and S. Islam, “Cyber security threat modeling for
supply chain organizational environments,” future internet, 2019.

[26] M. Cagnazzo, M. Hertlein, T. Holz, and N. Pohlmann, “Threat modeling
for mobile health systems,” in 2018 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW). IEEE, 2018.

[27] A. Gangavarapu, E. Daw, A. Singh, R. Iyer, G. Harp, S. Zimmerman,
and R. Raskar, “Target privacy threat modeling for COVID-19 exposure
notification systems,” arXiv preprint arXiv:2009.13300, 2020.

[28] ThreatModeler, “ThreatModeler,” https://threatmodeler.com/, 2020.
[29] K. Tuma, R. Scandariato, M. Widman, and C. Sandberg, “Towards

security threats that matter,” in Computer Security. Springer, 2017.
[30] L. Sion, D. Van Landuyt, K. Yskout, and W. Joosen, “SPARTA: Security

& privacy architecture through risk-driven threat assessment,” in IEEE
International Conference on Software Architecture Companion, 2018.

[31] T. Antignac, R. Scandariato, and G. Schneider, A Privacy-Aware Con-
ceptual Model for Handling Personal Data. Springer, 2016.

[32] Foreseeti, “SecuriCAD,” https://www.foreseeti.com/securicad/, 2020.
[33] A. van den Berghe, R. Scandariato, K. Yskout, and W. Joosen, “Design

notations for secure software: A systematic literature review,” Software
& Systems Modeling, vol. 16, no. 3, pp. 809–831, 2017.

[34] K. Wuyts, D. Van Landuyt, A. Hovsepyan, and W. Joosen, “Effective
and efficient privacy threat modeling through domain refinements,” in
Proceedings of the 33rd Annual ACM Symposium on Applied Computing,
2018, pp. 1175–1178.

[35] OWASP, “A pythonic framework for threat modeling.” https://owasp.
org/www-project-pytm/, 2021.

[36] threatspec.org, “Threatspec: continuous threat modeling, through code,”
https://threatspec.org/, 2021.

[37] L. Bass, “The software architect and DevOps,” IEEE Software, vol. 35,
no. 1, pp. 8–10, 2017.

[38] V. Mohan and L. B. Othmane, “SecDevOps: Is it a marketing
buzzword?-mapping research on security in DevOps,” in 2016 11th
international conference on availability, reliability and security (ARES),
2016.

[39] V. Mohan, L. ben Othmane, and A. Kres, “BP: security concerns and best
practices for automation of software deployment processes: An industrial
case study,” in 2018 IEEE Cybersecurity Development (SecDev), 2018.

[40] A. A. U. Rahman and L. Williams, “Software security in DevOps: syn-
thesizing practitioners’ perceptions and practices,” in 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery
(CSED). IEEE, 2016, pp. 70–76.

[41] M. Mattetti, A. Shulman-Peleg, Y. Allouche, A. Corradi, S. Dolev, and
L. Foschini, “Securing the infrastructure and the workloads of linux
containers,” in 2015 IEEE Conference on Communications and Network
Security (CNS). IEEE, 2015, pp. 559–567.

[42] C. Schneider, “Security DevOps-staying secure in agile projects,”
OWASP AppSec Europe, 2015.

[43] S. Cash, V. Jain, L. Jiang, A. Karve, J. Kidambi, M. Lyons, T. Mathews,
S. Mullen, M. Mulsow, and N. Patel, “Managed infrastructure with ibm
cloud openstack services,” IBM Journal of Research and Development,
vol. 60, no. 2-3, pp. 6–1, 2016.

[44] C. Tsigkanos, L. Pasquale, C. Ghezzi, and B. Nuseibeh, “On the
interplay between cyber and physical spaces for adaptive security,” IEEE
Transactions on Dependable and Secure Computing, 2016.

[45] S. K. Majhi and P. Bera, “Designing an adaptive firewall for enterprise
cloud,” in 2014 International Conference on Parallel, Distributed and
Grid Computing. IEEE, 2014, pp. 202–208.

[46] L. K. Strand, “Adaptive distributed firewall using intrusion detection,”
Master’s thesis, 2004.

[47] W. Lee, S. J. Stolfo, and K. W. Mok, “Adaptive intrusion detection: A
data mining approach,” Artificial Intelligence Review, 2000.

[48] W. L. Al-Yaseen, Z. A. Othman, and M. Z. A. Nazri, “Real-time
multi-agent system for an adaptive intrusion detection system,” Pattern
Recognition Letters, vol. 85, pp. 56–64, 2017.

[49] W. Y. Moon and S. D. Kim, “Adaptive fraud detection framework for
fintech based on machine learning,” Advanced Science Letters, 2017.

[50] A. Yeşilkanat, B. Bayram, B. Köroğlu, and S. Arslan, “An adaptive
approach on credit card fraud detection using transaction aggregation
and word embeddings,” in IFIP International Conference on Artificial
Intelligence Applications and Innovations. Springer, 2020, pp. 3–14.

[51] Y. Yang, X. Zheng, W. Guo, X. Liu, and V. Chang, “Privacy-preserving
smart IoT-based healthcare big data storage and self-adaptive access
control system,” Information Sciences, vol. 479, pp. 567–592, 2019.

[52] S. Kandala, R. Sandhu, and V. Bhamidipati, “An attribute based frame-
work for risk-adaptive access control models,” in 2011 Sixth Interna-
tional Conference on Availability, Reliability and Security. IEEE, 2011.

[53] A. Khan, “Key characteristics of a container orchestration platform to
enable a modern application,” IEEE Cloud Computing, no. 5, 2017.

[54] E. Casalicchio and S. Iannucci, “The state-of-the-art in container tech-
nologies: Application, orchestration and security,” Concurrency and
Computation: Practice and Experience, vol. 32, no. 17, p. e5668, 2020.

[55] A. Tabiban, S. Majumdar, L. Wang, and M. Debbabi, “Permon: An open-
stack middleware for runtime security policy enforcement in clouds,”
in 2018 IEEE Conference on Communications and Network Security
(CNS). IEEE, 2018, pp. 1–7.

[56] D. Guamán, J. Pérez, J. Diaz, and C. E. Cuesta, “Towards a reference
process for software architecture reconstruction,” IET Software, 2020.

[57] R. Koschke, “Architecture reconstruction,” in Software Engineering.
Springer, 2007, pp. 140–173.

[58] D. Weerasiri, M. C. Barukh, B. Benatallah, Q. Z. Sheng, and R. Ranjan,
“A taxonomy and survey of cloud resource orchestration techniques,”
ACM Computing Surveys (CSUR), vol. 50, no. 2, pp. 1–41, 2017.

[59] E. Casalicchio, “Container orchestration: a survey,” Systems Modeling:
Methodologies and Tools, pp. 221–235, 2019.

[60] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[61] N. F. S. De Sousa, D. A. L. Perez, R. V. Rosa, M. A. Santos, and
C. E. Rothenberg, “Network service orchestration: A survey,” Computer
Communications, vol. 142, pp. 69–94, 2019.

[62] D. Jönsson, P. Steneteg, E. Sundén, R. Englund, S. Kottravel, M. Falk,
A. Ynnerman, I. Hotz, and T. Ropinski, “Inviwo—a visualization system
with usage abstraction levels,” IEEE transactions on visualization and
computer graphics, vol. 26, no. 11, pp. 3241–3254, 2019.

[63] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
industry needs from architectural languages: A survey,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 6, pp. 869–891, 2012.

[64] P. Lago, I. Malavolta, H. Muccini, P. Pelliccione, and A. Tang, “The
road ahead for architectural languages,” IEEE Software, 2014.

[65] A. A. Júnior, S. Misra, and M. S. Soares, “A systematic mapping study
on software architectures description based on ISO/IEC/IEEE 42010:
2011,” in International Conference on Computational Science and Its
Applications. Springer, 2019, pp. 17–30.

[66] R. Eramo, I. Malavolta, H. Muccini, P. Pelliccione, and A. Pierantonio,
“A model-driven approach to automate the propagation of changes
among architecture description languages,” Software & Systems Mod-
eling, vol. 11, no. 1, pp. 29–53, 2012.

[67] A. P. F. Magalhaes, A. M. S. Andrade, and R. S. P. Maciel, “Model
driven transformation development (MDTD): An approach for de-
veloping model to model transformation,” Information and Software
Technology, vol. 114, pp. 55–76, 2019.

[68] W. De Borger, “Middleware for the inspection of complex software
systems,” 2014.

[69] D. Garlan, B. Schmerl, and S.-W. Cheng, “Software architecture-based
self-adaptation,” in Autonomic computing and networking, 2009.

[70] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw, “Engineering self-adaptive systems
through feedback loops,” in Software engineering for self-adaptive
systems. Springer, 2009, pp. 48–70.

7

https://owasp.org/www-project-pytm/
https://owasp.org/www-project-pytm/
https://threatspec.org/

	Introduction
	Background
	Threat modeling
	SecDevOps
	Adaptive security and privacy

	Motivating case: maritime system
	Reflective threat modeling
	Concept
	Research agenda

	A holistic adaptive threat management perspective
	Concept
	Research agenda

	Conclusion
	References

