
From automation to CI/CD:
a comparative evaluation of threat modeling tools

Dimitri Van Landuyt
DistriNet

KU Leuven, Belgium
dimitri.vanlanduyt@kuleuven.be

Laurens Sion
DistriNet

KU Leuven, Belgium
laurens.sion@kuleuven.be

Walewein Philips
DistriNet

KU Leuven, Belgium
walewein.philips@student.kuleuven.be

Wouter Joosen
DistriNet

KU Leuven, Belgium
wouter.joosen@kuleuven.be

Abstract—As threat modeling involves the architecture-centric
identification, analysis and mitigation of security threats, it
is considered an essential activity of the secure development
lifecycle (SDLC). Threat modeling outcomes are used to guide the
mitigation and risk management process, and to determine areas
of focus in later development stages (e.g., testing and verification).
Traditional threat modeling methods and techniques are driven
by human experts and stakeholders and mainly conducted
manually. Recently, focus has shifted towards automating (parts
of) the process through improved tool support.

In this paper, we evaluate the extent to which this trend also
leads to easier development pipeline integration of threat model-
ing tools, i.e. whether this also enables conducting threat model-
centric analysis within continuous integration and development
(CI/CD) build pipelines so that they can contribute to the overall
development-centric quality assurance process (SecDevOps). We
first articulate the key requirements for threat modeling tools to
be compatible or suited for CI/CD, and then we systematically
evaluate and compare seven automated threat modeling tools
against these requirements. Finally, we provide recommendations
towards making threat analysis tools and enablers both more
suitable for integration in a CI/CD context and hence, more
compatible to modern software engineering processes.

Index Terms—SecDevOps, CI/CD, tool integration, threat mod-
eling

I. INTRODUCTION

Continuous integration and development (CI/CD) activities
focus on (semi-)automating the software construction process,
and orchestrating this at the fine-grained level of individual
code commits. In continuous development (CD), automated
integration tests which are invoked within automated build
pipelines provide the developer with immediate feedback. In
continuous integration (CI), this even involves the immediate
deployment and live integration of the code updates into
a production system. While the automated testing activities
integrated in a CI/CD pipeline typically focus on the exe-
cution of functional test suites (e.g., regression tests), other
forms of testing such as security and scalability testing have
been applied as well [1], as well as the detection of faults,
flaws and vulnerabilities [1], the detection of performance
regressions [2], and robustness and dependability testing [3].
When it comes to security testing, a number of approaches
involve invoking code scanning [4], [5] tools to identify
issues and flaws, whereas others implement static application
security testing (SAST), dynamic application security testing
(DAST) [6], [7] and software composition analysis (SCA).

Threat modeling involves the systematic analytical assess-
ment of potential threats using an architectural abstraction of
the system such as a data flow diagram (DFD) representa-
tion. The threat modeling process involves (i) modeling the
system, (ii) identification (elicitation) of threats, (iii) threat
prioritization and (iv) threat mitigation [8]. Threat modeling
has predominantly been applied as a manual activity conducted
by experts and development-centric stakeholders, in a collabo-
rative workshop setting. This is reflected in the traditional tools
that mainly provide practitioners with support for creating
system models, to manually document threats, etc. However,
threat modeling is considered a costly and time-consuming
activity, which in practice is rarely repeated over the course of
development and evolution of a system. A repository mining
study of large collections of GitHub repositories has found
little evidence of architecture-centric threat modeling actually
being applied in these projects [9].

In that light, frequently re-evaluating threats is both com-
pelling and necessary. Systems increasingly deviate from their
initial designs, constantly evolve and change –among many
reasons due to the adoption of agile development, continu-
ous development and due to increasing market and delivery
pressures. Ease of adoption, automation, and repeatability of
threat analysis are therefore key objectives, both for economic
reasons and for increasing the overall level of scrutiny.

To alleviate this, research focus in the area of threat model-
ing has recently also shifted towards approaches that automate
parts of this process [10]–[13]. Tools that support this focus
a.o. on automated extraction of system models from different
artifacts (e.g., code, deployment descriptors, etc.) [14], [15],
automated generation of candidate threats at the basis of con-
solidated knowledge bases [16], risk assessment to prioritize
threats, and guide the risk mitigation and management process.

In this paper, we evaluate the current landscape of au-
tomated threat modeling tools and enablers on their readi-
ness for integration into CI/CD build pipelines. We articulate
key requirements for effective CI/CD integration of a threat
modeling tool, and then we evaluate the extent to which the
current automated threat modeling tools and enablers meet
these requirements.

This paper is structured as follows. Section II presents
the background and motivates this work, whereas Section III
discusses the related work. Section IV then outlines the study

approach, after which Section V presents the main results.
Section VI discusses the main findings, and Section VII finally
concludes the paper.

II. BACKGROUND AND MOTIVATION

Threat modeling is traditionally embedded in the early
stages –requirements and architectural design– of the secure
development life-cycle (SDLC). By analyzing potential security
risks early on, their mitigations can be inserted into the core
conceptual design of the system (i.e., its software architecture).
Furthermore, they can be taken care of before they materialize,
and before their mitigation becomes prohibitively costly and
cumbersome.

Threat modeling consists of four main steps [8], [17]:
(1) modeling the system under analysis, (ii) threat identifica-
tion, (iii) threat mitigation, and (iv) aggregation of outcomes
and overall process reflection. Most of the practical tools focus
on the first two steps: the creation of a system model and
supporting the identification, documentation and prioritization
of the threats.

Applying model-based analysis activities (such as threat
modeling) within high-frequency, iterative development pro-
cesses such as Agile development and CI/CD has proved chal-
lenging [18], [19]. This is partly due the discrepancy of focus
between source code and design, due to time and delivery
pressures, but also due to absence of a stable, overarching
and holistic view on the system under design, and lack of
convergence towards such a stable architecture.

Knowledge management and documentation quality has
been an issue in software development processes for decades.
Theunissen et al. [20], [21] observe and state that in the
context of CI/CD, knowledge and documentation that is often
implicitly or imperfectly kept in the development process
becomes embedded in the tools, scripts and descriptors of
the automated build pipelines. The ability of diverse tools
to interoperate reliably and repeatably in a consistent and
executable manner is predicated on a common understanding
of the end product, which in turn is indicative of a stable
architecture.

Study motivation: Automated testing tools have been
successfully integrated in continuous development pipelines,
but mainly focused on code and functionality such as build-
ability, regression and integration testing. For example, the
dependabot1 dependency checker has been integrated in the
GitHub CI/CD framework, to perform automated Software
Composition Analysis (SCA) to signal the developer when out-
dated library imports or packages with known vulnerabilities
have been used.

As argued by Haindl et al. [22], adopting a similar ap-
proach to address more crosscutting non-functional require-
ments (such as security, safety, dependability or privacy) is
highly compelling yet intrinsically more difficult. In this light,
the recent focus shift towards automation in threat modeling
tools [13], [16] is promising for many reasons. One of the

1https://github.com/dependabot/dependabot-core

stronger motivations is the ability to perform threat analysis
not just in a single shot effort, but to re-evaluate the threats
and risks as the system evolves over time [23], [24].

Study goal: In this study, we evaluate the extent to which
current automated threat modeling tools and frameworks are
fit for adoption in continuous development pipelines.

We base the design and focus areas of this comparative
evaluation study on the main requirements for practical inte-
gration2 of development tools from literature [1], [6].

III. RELATED WORK

Many threat modeling approaches and tools have emerged
over time. Threat modeling approaches are generally classi-
fied [17] as being either (i) design-centric, (ii) attack-centric,
(iii) asset-centric or (iv) data-centric. Existing surveys convey
the diversity in tools and approaches [25]–[27].

Threat modeling exists at a fundamental point in the tradi-
tional software development life-cycle, in the transition from
requirements (identification of threats) to design (selection of
countermeasures or solutions) [28], [29]. However, due to the
exhaustive nature of existing approaches, cost-effectiveness
and repeatability have been highlighted as key concerns. For
example, a design-centric approach such as STRIDE incurs the
problem of threat explosion in which a prohibitively large
amount of potential threats have to be considered, evaluated,
and possibly addressed [30], [31].

For this reason, more recently, a number of approaches
and tools have started focusing on the automation of specific
parts of the threat modeling process. Granata et al. [10], [16]
have compared a number of open-source, automated threat
modeling tools, more specifically Microsoft Threat Modeling
tool (MSTMT) [32], OWASP ThreatDragon [33] and SLAGen-
erator [34]. Tan and Garg [13] have reviewed automated threat
modeling tools with specific attention to their extensibility
and applicability for privacy threat analysis, or more broadly
their ‘amenability to custom threats’, which is one important
requirement for integration into specific projects. Their review
focused on CAIRIS [35], Threats Manager Studio [36], Threat-
spec [37], pytm [38], ThreatDragon [33], and Threagile [39].
As these studies focus on comparing (automated) features of
the different frameworks, they do not evaluate the overall
amenability towards the specific goal of CI/CD integration.

IV. STUDY DESIGN

We perform a comparative evaluation of the automated
threat modeling tools in the state of the art. First, Section IV-A
introduces the main research questions. Section IV-B then
motivates the study approach which is structured in accordance
to the Goal-Question-Metric (GQM) approach [40]. After that,
Section IV-C discusses the tool selection approach and Sec-
tion IV-D discusses the specific evaluation approach applied
to each threat modeling tool included in the study.

2We define this as the readiness or ease of integrating a specific software
quality evaluation tool into an automated CI/CD pipeline.

https://github.com/dependabot/dependabot-core

A. Research questions

To assess the current threat modeling tools in terms of
their readiness for integration into continuous integration or
development (CI/CD) pipelines, we focus on three specific and
complementary research questions.

1) RQ1. Degree of automation: Automation of the analysis
activity is a key enabler for integration in CI/CD. We focus on
the following questions: A number of existing tools implement
a form of automation, yet which of the four steps or phases
of the threat modeling process are effectively automated by
the tools, and to what degree? Does this lead to automated
repeatability of the entire threat analysis process?

In this research question, we focus on the nature and degree
of automation accomplished in the threat modeling tool or
framework. We distinguish between automation at the different
steps of the threat modeling process [8], [17]: (i) modeling the
system: model extraction or synchronization, (ii) threat iden-
tification, (iii) threat prioritization, and (iv) threat mitigation
support.

2) RQ2. Customization of knowledge resources: The ability
to tailor often generic and abstracted knowledge resources such
as threat catalogs and countermeasures catalogs is important
to effective integration into build processes [41], [42]. We
focus on the following questions: Do the threat modeling tools
support customizing and tailoring the knowledge resources
that are being used? To which extent can the tool effectively
be customized and tailored to the development context, or
application domain?

Specific applications, application domains and technologies
come with specific threat types, attention points, and counter-
measures. For example, when dealing with an AI/ML appli-
cation, threats such as poisoning the training data set, mem-
bership inference, model stealing, should be considered [43].
When a tool suggests or supports the threat mitigation step,
it may likewise be based on knowledge of application- or
domain-specific countermeasures. For example, the system
may perform adversarial robustness training or include specific
AI guardrails3 to mitigate some of these AI/ML threats.

3) RQ3. Integration-readiness: Although a number of tools
already provide some form of automation, this does not nec-
essarily imply that these automated features can be accessed
practically from within an automated build pipeline context.
We focus on the following question: To which extent is it
feasible to effectively integrate the tool or framework in a
practical CI/CD pipeline?

The technical and practical integration of an automated
threat modeling framework in automated build scripts and
CI/CD pipelines imposes a number of requirements: the tool
should be scriptable and externally invokable, for example
through a command-line interface (CLI). Apart from external
invocation, external instrumentation is also required (load
and import models and resources, start analysis activities,
obtain results, etc). In addition, developer feedback or analysis
outcomes should be externally processable so that it can be

3Filtering and redacting inputs and outputs of an AI model.

Evaluate current automated threat modeling tools in
terms of readiness for integration in CI/CD pipelines

RQ2. Customization of
knowledge resources

RQ3. Integration-
readiness

RQ1. Degree of
automation

invokemodel(t)
invokethreatid(t)
invokeprio(t)
invokemitig(t)
importmodel(t)
importtc(t)
importcm(t)

exportmodel(t)
exportthreats(t)
exportcmeasures(t)
formatinput(t)
formatoutput(t)

GOAL

QUESTION

METRIC

customtc(t)
customcm(t)

autommodel(t)
automthreatid(t)
automprio(t)
autommitig(t)

Fig. 1. The Goal-Question-Metric tree for this study.

integrated in the feedback provided to the developer (e.g., in
the reporting of a failed build job through build logs and error
outputs). This specifically means that the input and output
artifacts (e.g., files) should be externally readable.

B. GQM tree and evaluation criteria

We define a number of objectified and fine-grained criteria
that each contribute to answering the research questions. These
are categorical variables to distinguish between relevant cases.

1) Degree of automation (RQ1): The following variable is
defined to evaluate the extent of automation, making distinc-
tion between the different steps of the threat modeling process.

automstep(t) =

 Yes t automates threat step i
Partial t provides partial automation of i
No t does not automate step i

with step ∈ {model, threatid, prio,mitig}, referring to one of
the four threat modeling steps [8], [17].

2) Customization of knowledge resources (RQ2): These
variables express whether the tool or framework supports
customization of the used knowledge resources. We distinguish
between the threat catalog or threat library, and the library
consisting of mitigations or countermeasures (if available), as
these are play a fundamentally different role.4 In addition, we
pay attention to whether this customization can be performed
externally, e.g. because this knowledge is encoded in a read-
able format. This additional criterion is an enabler for parallel
evolution of threat and countermeasure libraries (e.g., to be
able to import newer releases of such a catalog from upstream).

custom[tc|cm](t) =



NA t provides no resource
customization support

internal t supports customization
only within the tool itself

external t supports customization
externally, e.g., config files

The subscripts tc respectively cm refer to the ability to
customize the threat library or the countermeasure library.

4This is related to the key distinction between the ‘problem space’ and the
‘solution space’, or between requirements and design.

3) Integration-readiness (RQ3): Finally, to evaluate the
ability to practically integrate a threat modeling tool t in an
automated CI/CD pipeline, we define the following variable:

import[model|tc|cm](t) = v,with v ∈ {true, false}

This expresses whether an input model, threat catalog or coun-
termeasure catalog can be loaded through external instruction
(e.g., via command-line options).

A similar variable is defined for output artifacts:

export[model|threats|cmeasures](t) = v,with v ∈ {true, false,NA}

Using this variable, we evaluate whether the tools allow
exporting the output model (DFD), the identified threats and
the selected countermeasures through external instruction.

We furthermore pay attention to the input and export formats
of these resources, more specifically whether they can be
parsed and interpreted externally, making distinction between
binary/proprietary outputs, or externally readable and more
open formats (e.g., a standardized format, csv, json, xml,
yaml or text files).

format[input|output](t) = v,with v ∈ {binary, textual,NA}

With binary formats, there is a strong dependency on the
tool or framework, which is then also required to externally
parse and process the outcomes of the analysis. With textual
and open formats, developers can create custom parsers or
scripts to process these artifacts.

We finally look at the ability to externally invoke the threat
analysis:

invokestep(t) =

 Yes t can be invoked externally
No t can not be invoked externally
NA step not automated

(1)
again with step ∈ {model, threatid, prio,mitig}. External in-
vocation is an enabler for the actual integration of the threat
modeling step in CI/CD build scripts.

C. Tool selection

We identify a list tools and frameworks at the basis of
recent comparative survey studies [10], [16], [26]. This list is
augmented with results of additional searches in both academic
literature and developer resources.5 Table I shows the resulting
set of tools. We define three inclusion criteria to filter this set
of tools relevant for this study.

IC1: The threat modeling tool or framework implements
a form of automation in (at least one of) the main
steps6 of the overall threat modeling process.

IC2: There is evidence that the tool is actively used in
practice and/or under active development.

5Most notably also the information shared within the threat-modeling
channel in the OWASP Slack community (https://owasp.slack.com).

6We exclude tools such as Threatspec or CoreTM that only implement
automation of the reporting, e.g. that extract a report based on manually-
obtained analysis outcomes.

Step 2: Information gathering

- customizing libraries: customtc|cm
- external invocation: invokestep

Step 1: setup

- tool availability
- tool installation

Step 4: Integrate in CI/CD pipeline
1. load resources
importmodel|tm|cm

2. export results
exportmodel|threats|prio|cm

3. read and parse externally
formatoutput|input

4. externally invoke activity
invokestep

Step 3: Apply to case

1. load/extract system model
2. load/apply threat knowledge
3. conduct threat elicitation
4. threat documentation
5. threat prioritization

automstep

Fig. 2. Overview of the workflow executed per tool and the evaluated
variables/metrics.

TABLE I
OVERVIEW OF THREAT MODELING TOOLS.

Inactive Active

Open source

Trike [44] OWASP Threat Dragon [33]
CORAS [45] Deciduous [46]
TAM2 [47] CoreTM [48]
OVVL [49] Threatspec [37]

SLAGenerator [34] CAIRIS [35]
OWASP pytm [38]

Threagile [39]
TicTaaC [50]
SPARTA [12]

Commercial
(Free to use)

Microsoft Threat Modeling Tool [32]
Threats Manager Studio [36]

Commercial
(Paid)

IriusRisk
ThreatModeler

SecuriCAD
SD Elements

Kenna
Tutamen Threat Model Automator

ThreatGet
itemis SECURE

STRIDE-GPT

Unavailable ThrEma [11]

tool Underlined tools do not meet criterion IC1 for inclusion in the study.

IC3: The tool is freely usable (open source tools or tools
without any licensing costs) and thus accessible for
experimentation.

Applying these criteria leads to the resulting set of tools
included in this study, as listed and summarized in Table II.

D. Evaluation approach

To ensure fairness and reproducibility of the study out-
comes, we define a systematic workflow which is used to
test the different capabilities on a per-tool basis. As depicted
in Figure 2, the workflow consists of four subsequent steps,7

and in each step, different variables, metrics and criteria are
evaluated.

7We adopt a best-effort approach: when one step fails or is executed
incompletely, findings are noted, and the subsequent steps are executed.

https://owasp.slack.com

TABLE II
OVERVIEW OF THE INCLUDED TOOLS IN THIS COMPARISON STUDY, TOGETHER WITH THE SUMMARY OF THEIR MAIN AUTOMATION CAPABILITIES.

Abbrev. Tool name Description Ver. Ref.

MSTMT Microsoft Threat Modeling Tool Graphical tool to create DFDs, threat generation at the basis of templates. Threat
prioritization takes into account specific attributes of elements.

7 [32]

pytm OWASP pytm pytm is a code-centric threat modeling framework in which system models are
expressed programmatically. Pytm generates a graphical representation of both
DFDs and sequence diagrams. Pytm performs threat generation at the basis of
knowledge encoded in the framework.

1.2.0 [38]

CAIRIS Computer Aided Integration of
Requirements and Information
Security

CAIRIS is an open-source platform aimed to harmonize and reconcile usability
requirements and risk analysis. It has been developed since 2012.

2.3.8 [35]

TMS Threats Manager Studio Threats Manager Studio is a free tool based on the open source project entitled
‘Threats Manager Platform’. TMS was released in 2020 and implements the
vNext threat modeling process. The main focus is on flexibility, and integration.

2.2.1 [36]

SPARTA Security and Privacy Threat
Modeling for Automated Threat
Elicitation and Risk-driven
Threat Prioritization

SPARTA is an Eclipse-based threat modeling tool which implements automated
threat elicitation, automated FAIR-based risk assessment based on enriched
models. One research prototype of SPARTA named CTAM is integrated in CI/CD.

2022.1 [23], [24]

Threagile Threagile: Agile Threat
Modeling

Threagile is open-source toolkit for agile threat modeling. Architecture is
expressed in yaml This model is subjected to a number of automated checks
expressed as risk rules.

0.9 [39]

TicTaaC Threat modeling-as-a-Code in a
Tick

TicTaaC is an automated threat modeling toolkit which can be integrated into a
SecDevOps process. It supports yaml-like specifications of data flows and uses
externalized and customizable threat libraries to generated possible threats.

1.3.0 [50]

Step 1. Setup Information about the tool and its capa-
bilities is gathered (e.g., development status and frequency,
current availability), and the tool is installed and prepared.

Step 2. Information gathering. In this step, specific au-
tomation capabilities of the tool are specifically sought for,
with specific attention to the capability to externally invoke
the tool, parse the input and output artifacts, and to customize
the knowledge resources.

Step 3. Apply automation in application case. In this
step, the automated features are applied to a specific, realistic
and consistent application case named DocProc.8 This step
allows obtaining more concrete results for automstep.

Step 4. Integrate in CI/CD pipeline. In this phase of the
experimental approach, the practical integration of the tool in
a CI/CD script is tested to identify the extent of support for
import, export, and external invocation of the tools.

V. RESULTS

A. RQ1. Threat modeling automation
The overall results for RQ1 summarizing the automation

capabilities are presented in Table III. We discuss these
findings on a per-tool basis.

• MSTMT implements a templating mechanism which al-
lows capturing threat knowledge specific to an application
type. The specification of GenerationFilters supports ex-
pressing the conditions when the threat is considered ap-
plicable. For example, the Microsoft template repository on
GitHub9 provides a dedicated template for Azure Cloud appli-
cations and one specialized template for medical devices. This

8This case refers to a B2B document processing Software-as-a-Service
application which originates from industry collaboration that has been used in
a number of research activities [51]–[53]. Detailed specifications and security
requirements can be consulted in [54].

9https://github.com/microsoft/threat-modeling-templates

TABLE III
OVERVIEW OF THE AUTOMATION CAPABILITIES OF EACH THREAT

MODELING TOOL (RQ1).

Metric M
S

T
M

T

py
tm

C
A

IR
IS

T
M

S

S
PA

R
TA

T
hr

ea
gi

le

Ti
cT

aa
C

autommodel(t) ○ ○ � ○ � * ○ ○
automthreatid(t) ○ ○ ○ ○ * ○ ○ ○
automprio(t) ○ ○ ○ ○ * ○ ○ ○
autommitig(t) ○ ○ ○ ○ ○ ○ ○

○ Yes
� Partial
○ No

* Support through non-default extension.

template is used to generate viable threats. While MSTMT does
automate the threat identification step, it lacks automation in
the other steps (as shown in the second column of Table III).

• The pytm framework is capable of identifying threats
autonomously at the basis of the programmatically-established
system model and threat definitions in the pytm threat library.
Generated threats are documented in detail, including an
assessment of severity and likelihood of attack. Thus, pytm
automates threat identification and prioritization (third column
of Table III).

• CAIRIS users can opt to define resources and assets in
a relational manner, and have the tool generate an initial,
incomplete DFD. As such extracted DFD lack actual data
flows, this is considered partial support for the overall system
modeling step. CAIRIS does not automate other steps (as
shown in the fourth column of Table III).

• Threat Manager Studio (TMS) provides the ‘Automatic

https://github.com/microsoft/threat-modeling-templates

Threat Generation’ extension10 which provides capabilities to
automatically generate and prioritize threats (fifth column of
Table III). This tool furthermore distinguishes between threat
types (potential threats as encoded in a reusable knowledge
base) and threat events (more concrete threat instances that
may be applicable to the system model).

• SPARTA (sixth column of Table III) generates threats
using threat catalogs that include model query patterns for
identifying applicable threats. Based on model enrichments
(e.g., assets, data subjects, existing countermeasures or miti-
gations), it automatically adjusts the priorities of the threats.

• Threagile loads the relevant data for its analysis from
a yaml file that specifies the different data assets, technical
assets (including their communication), and trust boundaries.
From this input, Threagile automatically generates the threats
based on its internal catalog (or other plugins) and performs
a risk-based priority assessment which evaluates the confiden-
tiality, integrity, and availability attributes of the assets (cf. the
seventh column of Table III).

• TicTaaC loads data flow diagram specifications (yaml
files) and applies threat library knowledge to identify threats
in an automated fashion. The specification of each threat
encoded in the library includes an elicitation expression,
which is used in the threat generation process. For exam-
ple, the logical expression “target.type == database”11 is
used to create database-broad-development-team-access
threats which represent situations in which databases are too
broadly accessible within the development team. TicTaaC
additionally allows specifying mitigations in separate files
(mitigations.yml) which are taken into account during threat
identification. However, these are to be specified manually and
lack any form of automation (cf. the final column of Table III).

RQ1 findings. The studied tools mainly automate the
threat identification step, and to a lesser degree also threat
prioritization, but automation in the other threat modeling
steps is currently lacking.
Being able to automatically synchronize and update the
system models (model) at the basis of source code com-
mits, and to provide the developer with threat mitigation
(mitig) support are highly desirable in a CI/CD context.

B. RQ2. Customization of knowledge resources

Table IV summarizes the outcomes of evaluating the tools in
terms of the customization support they provide for the types
of threats (threat catalog or tc), or the types of countermea-
sures they can express or suggest (cm).

• MSTMT provides external customization support for both
threat types and mitigations (cf. second column of Table IV).
The templates (.tb7 files) are formatted in xml which can as
such be parsed and manipulated externally, and a customized

10https://threatsmanager.com/training/advanced/extensions/auto-threat-
generation/

11Taken from https://github.com/rusakovichma/TicTaaC/blob/master/src/
main/resources/threats-library/default-threats-library.yml.

TABLE IV
OVERVIEW OF THE CUSTOMIZATION CAPABILITIES OF EACH THREAT

MODELING TOOL (RQ2).

Metric M
S

T
M

T

py
tm

C
A

IR
IS

T
M

S

S
PA

R
TA

T
hr

ea
gi

le

Ti
cT

aa
C

customtc(t) ○ ○ ○ ○ ○ � ○
customcm(t) ○ ○ ○ ○ ○ ○ ○

○ External customization support (e.g., config files).
� Internal customization support (strong dependency on the tool).
○ No customization support (NA).

threat template can be constructed using the Template Editor
which is part of the MSTMT framework. The template mech-
anism also provides support for expressing countermeasures,
which are part of the same template files. Currently, three
distinct templates are officially supported and packaged as part
of MSTMT: the default template, one for Azure applications,
and one for medical devices. Other forks and variants have
also come to existence and have been shared in external
repositories.12

• pytm loads a separate threat library, which is located
in the /threatlib/threats.json file of the pytm installation.
The library consists of a number of different threats which
has grown and evolved over time: while the first version
of this json file consisted of 54 threat types, currently it
has 103. The threat library also contains information related
to possible mitigations or countermeasures. As json is an
open and externally-readable and -manipulable file format, we
conclude that external customization is well-supported in pytm
(cf. third column of Table IV).

• CAIRIS packages a default threat library (in the
ics_tv_types.xml file) which is structured as an xml
document. This library currently consists of nine ex-
ample threat types. In addition, two other example
threat libraries are provided: cwecapec_tv_types.xml and
owasp_tv_types.xml. These are relatively limited and
haven’t been updated since the initial release. Given that an
xml-based format is used, these libraries can be extended
and customized.13 As also highlighted in the fourth column
of Table IV, CAIRIS does not support countermeasure or
mitigation libraries.

• Threats Manager Studio (TMS) does not provide any
default libraries. Knowledge about threats and mitigations is
encapsulated in templates. The TMS website14 provides one
such custom template for Azure PaaS Core. To each threat type
encoded in such template, a number of possible mitigations
can be attributed. The list of threat types and known mitiga-

12E.g., https://github.com/AzureArchitecture/threat-model-templates/ for
Azure, https://github.com/tmart234/mobile-application-threat-model-template
for mobile applications, https://github.com/arvindpj007/Threat-Modeling-
CISCO-OpenConnect for VPNs.

13The XML document type definitions (DTD) for this can be found through
the CAIRIS documentation site (https://cairis.readthedocs.io/en/latest/io.html).

14https://threatsmanager.com/downloads/templates/

https://threatsmanager.com/training/advanced/extensions/auto-threat-generation/
https://threatsmanager.com/training/advanced/extensions/auto-threat-generation/
https://github.com/rusakovichma/TicTaaC/blob/master/src/main/resources/threats-library/default-threats-library.yml
https://github.com/rusakovichma/TicTaaC/blob/master/src/main/resources/threats-library/default-threats-library.yml
https://github.com/AzureArchitecture/threat-model-templates/
https://github.com/tmart234/mobile-application-threat-model-template
https://github.com/arvindpj007/ Threat-Modeling-CISCO-OpenConnect
https://github.com/arvindpj007/ Threat-Modeling-CISCO-OpenConnect
https://cairis.readthedocs.io/en/latest/io.html
https://threatsmanager.com/downloads/templates/

tions can be adjusted and changed through a dedicated user
interface feature, and thus internal customization is possible.
Furthermore, as these templates (.tmt file) are in fact archive
file that consist of one json (threatmodeltemplate.json) and
one xml meta-data file ([Content_Types].xml), we con-
clude that external customization is also theoretically possible
(cf. fifth column of Table IV).

• SPARTA’s CLI only requires a single input model file (-
-input), which then has to contain the necessary references
to the accompanying threat type and countermeasure catalogs
that are used for the threat elicitation and the applied coun-
termeasures. The threat type and countermeasure catalogs are
structured as xml files which allows for external customization
(cf. sixth column of Table IV).

• Threagile comes with a built-in set of risk rules that
are used to generate the threats. The generation logic can be
extended, but this requires the programmatic creation of risk
rule plugins within the framework, which is considered a form
of internal customization, as highlighted in the seventh column
of Table IV. The countermeasures are partly predefined as
attributes, and partly as a textual description in the yaml file
when keeping track of the status of the identified risks.

• TicTaaC (final column of Table IV) comes with a
default threat library, but developers can specify additional
threats in separate files and these can be loaded using the
--threatsLibrary command-line parameter. The
--mitigations parameter is used to load project-specific
mitigations, which as discussed above, are to be constructed
manually.

RQ2 findings. Nearly all evaluated threat modeling tools
support customization of both the threat and countermea-
sure knowledge resources. This feature allows tailoring
to a specific application context in a reusable manner.
However, apart from SPARTA, none of the tools maintains a
clear segregation between both. For example, a number of
tools introduce a templating mechanism, in which logical
expressions encapsulate both information about threat types
(problems) and threat mitigations (solutions). In those
cases, both types of knowledge are tightly interdependent
and can not independently evolve.
A standard in encoding of threat or countermeasure knowl-
edge is currently lacking, which means that efforts made to
customize resources for a specific project risk being tool-
locked-in, and that the information used by these tools does
not easily port or compare.

C. RQ3. Integration-readiness

Table V summarizes the results of evaluating external in-
vocability of the automated features. Table VI summarizes
the input (import) and output (export) capabilities of the
different threat modeling tools. Finally, Table VII summarizes
the external readability of these inputs and outputs.

• MSTMT is a graphical and user-interactive tool, and lacks
support for external invocation to initiate a specific threat

TABLE V
OVERVIEW OF THE INTEGRATION-READINESS RESULTS FOR EACH THREAT

MODELING TOOL (RQ3).

Metric M
S

T
M

T

py
tm

C
A

IR
IS

T
M

S

S
PA

R
TA

T
hr

ea
gi

le

Ti
cT

aa
C

invokemodel(t) NA NA ○ NA NA NA NA
invokethreatid(t) ○ ○ NA ○ ○ ○ ○
invokeprio(t) NA ○ NA ○ ○ ○ NA
invokemitig(t) NA NA NA NA NA NA NA

○ Yes.
○ No.

NA Not applicable since the step is not automated.

TABLE VI
OVERVIEW OF TOOL CAPABILITY TO EXTERNALLY INVOKE IMPORT OR

EXPORT RELEVANT ARTIFACTS (RQ3).

Metric M
S

T
M

T

py
tm

C
A

IR
IS

T
M

S

S
PA

R
TA

T
hr

ea
gi

le

Ti
cT

aa
C

importmodel(t) ○ ○ ○ ○ ○ ○ ○
importtc(t) ○ ○ ○ ○ ○ ○ ○
importcm(t) ○ ○ NA ○ ○ ○ ○

exportmodel(t) ○ ○ ○ ○ ○ ○ ○
exportthreats(t) ○ ○ ○ ○ ○ ○ ○
exportcmeasures(t) ○ ○ ○ ○ ○ ○ ○

○ True (supported).
○ False (not supported).

modeling step or activity, or to import/export resources or
threat analysis outcomes (as shown in the second column of
Table V). MSTMT supports manually exporting threat models
to curated Microsoft Word files that use a specific template
(.dotx file). For this support, it provides a dedicated Microsoft
Word plug-in.15 The website reports a command-line tool to
perform massive migration of Microsoft Threat Modeling Tool
files, but this is not available at the time of writing. Most
notable is the DevOps plugin which provides the capability
to report directly to the Azure DevOps service (keeping
track of issues and mitigations), and provides overall project
management facilities. This feature is however heavily UI-

15https://downloads.threatsmanager.com/latest/TMPlatform_
ReportingAddIn.msi

TABLE VII
SUMMARY OF THE EXTERNAL ACCESSIBILITY OF THE ARTIFACT

FORMATTINGS PER THREAT MODELING TOOL (RQ3).

Metric M
S

T
M

T

py
tm

C
A

IR
IS

T
M

S

S
PA

R
TA

T
hr

ea
gi

le

Ti
cT

aa
C

formatinput(t) NA NA ○ ○ ○ ○ ○

formatoutput(t) NA ○ ○ ○ ○ ○ ○

○ Textual.
○ Binary.

NA Not applicable because input/output support is lacking.

https://downloads.threatsmanager.com/latest/TMPlatform_ReportingAddIn.msi
https://downloads.threatsmanager.com/latest/TMPlatform_ReportingAddIn.msi

driven, and not accessible from an external (command-line)
interface, and thus less suited for reporting or management
within an automated CI/CD build pipeline. The overall lack
of import/export support is reflected in the second column of
Tables VI and VII.

• The threat analysis and prioritization capabilities of pytm
can be invoked externally through Python scripts, as shown in
the third column of Table V. The import/export capabilities are
summarized in the third column of Table VI. The pytm frame-
work relies on a specific Python-encoded representation of the
system model, and it does not support importing models nor
does it support extraction from other artifacts or code bases.
Through the --dfd command-line flag, the directed graph
representation of the system model itself can be exported. This
output can then be parsed and further processed with external
tools such as dot.16 The pytm framework also supports ex-
porting sequence diagrams using the --seq flag. Additionally,
pytm supports exporting results to a json file (--json), a sqlite
database (--sqldump), a list of threats (--list), a list of ele-
ments (--list-elements) and a Markdown report (--report). It
also allows querying the system model for specific information
(--describe). These are externally-parseable file formats and
data structures, as shown in the third column of Table VII.

• CAIRIS runs as a service or daemon and provides a
well-documented REST API for remote authentication and
invocation.17 However, the actual DFD generation/extraction
capabilities discussed above can not be invoked externally
in CAIRIS, as shown in the fourth column of Table V. The
cimport.py script supports loading a model; a complementary
script (cexport.py) is provided to programmatically export
the threats and risk outcomes (as shown in the fourth column
of Table VI). CAIRIS provides draw.io integration to specify
importable data flow diagrams, but only when the cairis_dfd
library/stencils are used in the drawio.io diagramming tool.
These are json-based representations and thus textual in
nature. The .cairis file type stores models in a binary represen-
tation, but CAIRIS also supports exporting to xml documents18

(cf., the fourth column of Table VII).
• Threat Manager Studio (TMS) supports importing MSTMT

models through an extension that is available through the
website.19 It further lacks support for invoking threat modeling
steps and import/export, as shown in the fifth column of
Tables V and VI. TMS uses binary file formats, as indicated
in the fifth column of Table VII.

• SPARTA provides a jar-file (sparta-cli.jar) to en-
able the command-line execution of its threat elicita-
tion engine (independent of the graphical UI). This
is highlighted as such in the sixth column of Ta-
ble V. The engine is invoked with the input model

16For example, ‘tm.py --dfd | dot -Tpng -o dfd-output.png’ exports
the directed graph representation and stores it in the ‘dfd-output.png’ file.

17https://cairis.readthedocs.io/en/stable/api.html
18In compliance to the CAIRIS DTD, cf. https://cairis.org/dtd/cairis_model.

dtd.
19The DocProc DFD experimentation however indicated that the current

import functionality itself is flawed.

(--input), the threat catalogs to which the input model refers,
and the requested output format (--outcsv, --outxlsx). While
the threats can be exported in multiple formats, the model
itself can only be exported via the UI. (cf., the sixth column
of Table VI). For all resources, xml encodings are used (as
shown in the sixth column of Table VII).

• As indicated in the seventh column of Table V, Threagile
can be started from the command line (or as a REST web
service). The threat catalog is not importable but requires the
plugins. The resulting model (-generate-data-flow-diagram,
-generate-data-asset-diagram) and threat analysis results (
-generate-risks-json, -generate-risks-excel) can be ex-
ported in multiple formats (cf. seventh column in Table VI).
Threagile loads all the information to perform threat analysis
and risk assessment from a yaml file. This file contains a
textual representation of the model and the countermeasures
(cf. seventh column in Table VII).

• TicTaaC supports external invocation via the command-
line interface (CLI),20 (cf., the final column of Table V).
It can programmatically load system models using the
--threatModel command-line parameters. In terms of export,
the framework mainly allows exporting an all-encompassing
summary report (data flow diagram with threats and possibly
mitigations), as either a html or json document structure. This
is done by setting the --outFormat parameter and specifying
the output file (--out). These findings are presented in the final
column of Table VI. All inputs (data flow diagram specifica-
tion, threat library and countermeasures) are encoded as textual
yaml files (cf. final column of Table VII). Highly relevant for
the CI/CD integration requirements is the --failOnThreatRisk
command-line parameter of TicTaaC which accepts a risk
level and reports failure of the threat modeling analysis job
when actual threats were found above that risk level.21 When
integrated in a CI/CD pipeline, this will then be trigger failure
of the entire build job (broken build pipeline), and be reported
to the developer responsible for the source code commit.

RQ3 findings. A number of the tools provide relevant
import and export functionalities, but in the tools that are
mainly oriented towards human users (e.g., MSTM), this
support is not suited for programmatic processing in CI/CD
pipelines (e.g., Markdown or Microsoft Word files).
The tools that do provide import and export capabilities
all employ data formats that are externally readable and
processable. This is not entirely surprising, given that we
have applied a selection strategy that emphasizes open and
accessible tools (inclusion criterion IC3).

VI. DISCUSSION

Section VI-A discusses threats to validity of this study,
and Section VI-B then reflects on the expressiveness and
exhaustiveness of the different approaches to model threat

20https://github.com/rusakovichma/TicTaaC/wiki
21Specifically, TicTaaC then outputs these threats to stderr which is

interpreted and reported by CI/CD runners as a breaking issue.

https://cairis.readthedocs.io/en/stable/api.html
https://cairis.org/dtd/cairis_model.dtd
https://cairis.org/dtd/cairis_model.dtd
https://github.com/rusakovichma/TicTaaC/wiki

types and countermeasures. Finally, Section VI-C elaborates
on interoperability requirements and data exchange formats for
threat modeling.

A. Threats to Validity

This section elaborates in the different threats to validity
(construct, internal, external).

A first threat to validity is in the selection of the metrics
used to assess the readiness for integration of automated
threat modeling in CI/CD pipelines, which may not the most
appropriate for measuring integration-readiness. To alleviate
this threat to validity, this study relies on the GQM framework
to decompose the integration-readiness into specific questions
and metrics in a structured and reasoned manner.

A second threat to validity is related to the validity of
the results. These may be inaccurate because of lacking
documentation or insufficient experience with these specific
threat modeling tools. For each tool, a detailed motivation is
provided to motivate the scores that were assigned in the result
tables (Tables III to VII).

A final threat to validity involves the generalizability of the
results. A set of inclusion criteria was defined, specifically
to select the tools that implement automation (IC1), are
under active use or development (IC2), and are available
for experimentation (IC3). This subset of threat modeling
tools however is not indicative of the complete landscape of
threat modeling tools, which includes a significant amount of
commercial tools. The observations made in this paper are not
generalizable to tools that were excluded from this study.

Finally, we remark that it should not necessarily be within
the expectations that a single tool or framework will neces-
sarily implement all the stated and evaluated requirements: a
complementary set of tools may accomplish the ideal coverage
of the different steps and aspects of the overall process.

B. Expressiveness and exhaustiveness

This study mainly focused on the integration of threat
modeling tools and mainly of their automation capabilities
for system model specification, threat elicitation, prioritization,
and mitigation. This is however a coarse-grained assessment
of such features which does not convey well the variation
that we observed in both expressiveness and exhaustiveness, in
(1) modeling of the system and which additional information
can be expressed in these models; (2) the threat type catalogs,
the granularity of the modeled threats, and the level of detail
in the threat type criteria; and (3) the countermeasure catalogs,
the variation in types of countermeasures that can be ex-
pressed, how and how countermeasures affect threats and risks.
Such differences were not directly taken into account in this
study, and as such, more in-depth comparison is considered
part of future work.

C. Interoperability of threat modeling data

This study (RQ2) assesses whether the different input and
output representations supported by the tools are in textual
or binary formats, and shows that for the studied tools, a

textual and accessible format is predominantly used (json,
yml, xml, etc). Despite external accessibility, we did observe
large diversity in both input and output formats. In fact,
each tool comes with its own encoding and data schema for
these artifacts, and tools model threats at different levels of
granularity and abstraction (e.g., threat types in MSTMT and
SPARTA and CAPEC and CVE entries in pytm). This diversity
negatively affects the extent to which these results can be
reused or integrated in other tooling as part of the CI/CD build
pipeline. The overall lack of standardization in threat model
formats is an additional factor that hinders the use, integration
and interchangeability of different tools in the CI/CD context.
To make these different tools interoperate, complex translation,
import and wrapper logic will have to be established.

One noteworthy initiative is the Open Threat Modeling For-
mat (OTM).22 This format has been specified by IriusRisk, and
is currently only supported by their tools. Furthermore, this
initivative advocates encoding a number of different element
types (the system model, threats, countermeasures, assets, trust
zones) into a single json file, which is inadvisable mainly
for reasons of independent evolution of these artifacts and
separation of concerns.

VII. CONCLUSION

This paper evaluates seven automated threat modeling tools
and frameworks against the requirements for practical integra-
tion into CI/CD pipelines. We focus on the ability to (i) cus-
tomize the knowledge resources (threats and countermeasures)
to the specific application context at hand, and (ii) the ex-
ternal controllability either through remote invocation, or via
a script/command-line interface (i.e. the ability to invoke,
import, export, process, version inputs and outputs such as
system models, threats, countermeasure suggestions, etc).

In terms of potential, we identify pytm, SPARTA, Threagile
and TicTaaC as the most promising threat modeling imple-
mentations for CI/CD. Notably, for SPARTA, a complementary
prototype called CTAM practically integrates its engine into
GitLab CI/CD build pipelines [23], [24]. TicTaaC provides a
dedicated command-line option (--failOnThreatRisk) which
forces the overall build job to fail when certain threats are
found to be above a certain threshold (e.g. High severity).
This mechanism then impedes further development until these
threats have been appropriately mitigated.

We subject these tools to expectations and requirements that
they were not originally intended for. Notably, the GUI-based
tools are meant for manual operation, and in those cases, any
support for automation has been a late addition, or even an
optional extension. We make the following recommendations
for threat modeling tool and framework developers:

1) Broaden the automation capabilities, including the capa-
bility to extract or derive system models from code and to
suggest specific mitigations and countermeasures as part
of the CI/CD build reporting.

22https://github.com/iriusrisk/OpenThreatModel

https://github.com/iriusrisk/OpenThreatModel

2) Allow for separate creation and specification of knowl-
edge resources, and provide support for customization of
these towards specific context (e.g., application domains).

3) Maintain a separation between threats (problem space)
and countermeasures (in separate catalogs or libraries),
as it will allow for independent evolution and reuse.

4) Prepare the tools for programmatic, external access and
invocation, with support for dynamically selecting and
loading different and customized knowledge resources.

5) Publish open data schema specifications for encoding and
parsing the different threat modeling artifact (i.e., system
models and templates, threat catalogs, countermeasures,
etc) and to allow for broader interoperability.

6) Collaborate towards industry standards for encoding and
parsing the different threat modeling artifacts.

We particularly envision the emergence of an ecosystem of
complementary and interoperable tools that each implement
one relevant aspect of the threat modeling process in a mod-
ular and self-contained manner (e.g., dedicated system model
extractors from code, a threat elicitation engine, etc). These
utilities can then be composed and concatenated to establish
the desired degree of integration in a more customized and
project-specific manner. We observed this in pytm which relies
on the dot utility to visualize DFDs, and similarly we envision
that other complementary compositions of such enablers can
be made in accomplishment of the broader goal of effective
CI/CD support. To attain this broader vision however, emphasis
on openness, interoperability and standardization, as discussed
above, are considered essential prerequisites.

ACKNOWLEDGMENT

This research is partially funded by the Research Fund KU
Leuven, and by the Cybersecurity Research Program Flanders.

REFERENCES

[1] M. Shahin, M. A. Babar, and L. Zhu, “Continuous integration, delivery
and deployment: a systematic review on approaches, tools, challenges
and practices,” IEEE access, vol. 5, pp. 3909–3943, 2017.

[2] F. Erculiani, L. Abeni, and L. Palopoli, “uBuild: Automated Testing and
Performance Evaluation of Embedded Linux Systems,” in Architecture of
Computing Systems–ARCS 2014: 27th International Conference, Lübeck,
Germany, February 25-28, 2014. Springer, 2014, pp. 123–134.

[3] L. Zhu, D. Xu, A. B. Tran, X. Xu, L. Bass, I. Weber, and
S. Dwarakanathan, “Achieving reliable high-frequency releases in cloud
environments,” IEEE Software, vol. 32, no. 2, pp. 73–80, 2015.

[4] M. Marandi, A. Bertia, and S. Silas, “Implementing and automating se-
curity scanning to a devsecops ci/cd pipeline,” in 2023 World Conference
on Communication & Computing (WCONF). IEEE, 2023, pp. 1–6.

[5] G. Hao, F. Li, W. Huo, Q. Sun, W. Wang, X. Li, and W. Zou, “Con-
structing benchmarks for supporting explainable evaluations of static
application security testing tools,” in 2019 International Symposium on
Theoretical Aspects of Software Engineering (TASE), 2019, pp. 65–72.

[6] T. Rangnau, R. v. Buijtenen, F. Fransen, and F. Turkmen, “Continuous
security testing: A case study on integrating dynamic security testing
tools in CI/CD pipelines,” in 24th International Enterprise Distributed
Object Computing Conference (EDOC). IEEE, 2020, pp. 145–154.

[7] A. M. Putra and H. Kabetta, “Implementation of devsecops by inte-
grating static and dynamic security testing in ci/cd pipelines,” in 2022
IEEE International Conference of Computer Science and Information
Technology (ICOSNIKOM). IEEE, 2022, pp. 1–6.

[8] Z. Braiterman, A. Shostack, J. Marcil, S. de de Vries, I. Michlin,
K. Wuyts, R. Hurlbut, B. S. Schoenfield, F. Scott, M. Coles, C. Romeo,
A. Miller, I. Tarandach, A. Douglen, and M. French, “Threat Modeling
Manifesto,” https://www.threatmodelingmanifesto.org/, Nov. 2020.

[9] B. Gruner, S. T. Heckner, T. Sonnekalb, B.-E. Bouhlal, and C.-A. Brust,
“Finding a needle in a haystack: Threat analysis in open-source projects,”
2024.

[10] D. Granata, M. Rak, and G. Salzillo, “Automated threat modeling
approaches: Comparison of open source tools,” in International Con-
ference on the Quality of Information and Communications Technology.
Springer, 2022, pp. 250–265.

[11] F. De Rosa, N. Maunero, P. Prinetto, F. Talentino, and M. Trussoni,
“ThreMA: Ontology-Based Automated Threat Modeling for ICT Infras-
tructures,” IEEE Access, vol. 10, pp. 116 514–116 526, 2022.

[12] L. Sion, “Automated threat analysis for security and privacy,” 2020.
[13] K. Tan and V. Garg, “An analysis of open-source automated threat mod-

eling tools and their extensibility from security into privacy.” USENIX,
2022.

[14] M. Abi-Antoun, D. Wang, and P. Torr, “Checking threat modeling
data flow diagrams for implementation conformance and security,”
in Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering, 2007, pp. 393–396.

[15] P. Benedusi, A. Cimitile, and U. De Carlini, “A reverse engineering
methodology to reconstruct hierarchical data flow diagrams for software
maintenance,” in Proceedings. Conference on Software Maintenance-
1989. IEEE, 1989, pp. 180–189.

[16] D. Granata and M. Rak, “Systematic analysis of automated threat mod-
elling techniques: Comparison of open-source tools,” Software quality
journal, vol. 32, no. 1, pp. 125–161, 2024.

[17] A. Shostack, Threat modeling: Designing for security. John Wiley &
Sons, 2014.

[18] D. S. Cruzes, M. G. Jaatun, K. Bernsmed, and I. A. Tøndel, “Chal-
lenges and experiences with applying microsoft threat modeling in agile
development projects,” in 2018 25th Australasian Software Engineering
Conference (ASWEC). IEEE, 2018, pp. 111–120.

[19] M. G. Jaatun, K. Bernsmed, D. S. Cruzes, and I. A. Tøndel, “Threat
modeling in agile software development,” in Exploring Security in
Software Architecture and Design. IGI Global, 2019, pp. 1–14.

[20] T. Theunissen, S. Hoppenbrouwers, S. Overbeek, J. Filipe, M. Smialek,
A. Brodsky, S. Hammoudi et al., “In continuous software development,
tools are the message for documentation,” ICEIS, vol. 2, pp. 153–164,
2021.

[21] T. Theunissen, U. van Heesch, and P. Avgeriou, “A mapping study on
documentation in continuous software development,” Information and
software technology, vol. 142, p. 106733, 2022.

[22] P. Haindl and R. Plösch, “Towards continuous quality: measuring and
evaluating feature-dependent non-functional requirements in devops,” in
2019 IEEE International Conference on Software Architecture Compan-
ion (ICSA-C). IEEE, 2019, pp. 91–94.

[23] L. Sion, D. Van Landuyt, K. Yskout, S. Verreydt, and W. Joosen,
“Automated threat analysis and management in a continuous integration
pipeline,” in 2021 IEEE Secure Development Conference (SecDev),
2021, pp. 30–37.

[24] ——, “CTAM: a tool for continuous threat analysis and management,”
in CyberSecurity in a DevOps Environment: From Requirements to
Monitoring. Springer, 2023, pp. 195–223.

[25] N. Shevchenko, T. A. Chick, P. O’Riordan, T. P. Scanlon, and C. Woody,
“Threat modeling: a summary of available methods,” Tech. Rep., 2018.

[26] Z. Shi, K. Graffi, D. Starobinski, and N. Matyunin, “Threat modeling
tools: A taxonomy,” IEEE Security & Privacy, vol. 20, no. 4, pp. 29–39,
2021.

[27] W. Xiong and R. Lagerström, “Threat modeling–a systematic literature
review,” Computers & security, vol. 84, pp. 53–69, 2019.

[28] S. Türpe, “The trouble with security requirements,” in 2017 IEEE 25th
International Requirements Engineering Conference (RE). IEEE, 2017,
pp. 122–133.

[29] T. Okubo, N. Yoshioka, and H. Kaiya, “Security driven requirements
refinement and exploration of architecture with multiple nfr points of
view,” in 2014 IEEE 15th International Symposium on High-Assurance
Systems Engineering. IEEE, 2014, pp. 201–205.

[30] K. Tuma, R. Scandariato, M. Widman, and C. Sandberg, “Towards
security threats that matter,” in Computer Security: ESORICS 2017
International Workshops, CyberICPS 2017 and SECPRE 2017, Oslo,

https://www.threatmodelingmanifesto.org/

Norway, September 14-15, 2017, Revised Selected Papers 3. Springer,
2018, pp. 47–62.

[31] D. Van Landuyt and W. Joosen, “A descriptive study of assumptions in
STRIDE security threat modeling,” Software and Systems Modeling, pp.
1–18, 2021.

[32] Microsoft, “Microsoft Threat Modeling,” https://www.microsoft.com/en-
us/securityengineering/sdl/threatmodeling, Feb. 2024.

[33] The OWASP Foundation, “OWASP Threat Dragon,” https://www.
threatdragon.com/, Feb. 2024.

[34] V. Casola, A. De Benedictis, M. Rak, and U. Villano, “A novel security-
by-design methodology: Modeling and assessing security by slas with
a quantitative approach,” Journal of Systems and Software, vol. 163, p.
110537, 2020.

[35] CAIRIS, “CAIRIS: An open source platform for building security and
usability into your software: Quick Start,” https://cairis.readthedocs.io/
en/latest/gettingstarted.html, Feb. 2024.

[36] TMS, “Threats manager studio,” https://threatsmanager.com/, Feb. 2024.
[37] Threatspec, “Example report applied to a WebApp,” https://github.com/

threatspec/threatspec_example_report, Feb. 2024.
[38] I. Tarandach, “A pythonic framework for threat modeling,” https://github.

com/izar/pytm, Oct. 2023.
[39] Threagile, “Agile threat modeling toolkit,” https://github.com/Threagile/

threagile, May 2024.
[40] V. R. B. G. Caldiera and H. D. Rombach, “The goal question metric

approach,” Encyclopedia of software engineering, pp. 528–532, 1994.
[41] K. Wuyts, D. Van Landuyt, A. Hovsepyan, and W. Joosen, “Effective

and efficient privacy threat modeling through domain refinements,” in
Proceedings of the 33rd Annual ACM Symposium on Applied Computing,
2018, pp. 1175–1178.

[42] L. Sion, D. Van Landuyt, and W. Joosen, “Leveraging the domain
experts: specializing privacy threat knowledge,” in The 8th Interna-
tional Workshop on SECurity and Privacy Requirements Engineering
(SECPRE), 2024.

[43] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp.
2154–2156.

[44] P. Saitta, B. Larcom, and M. Eddington, “Trike v. 1 methodology doc-
ument [draft],” URL: http://dymaxion.org/ trike/Trike_v1_Methodology_
Documentdraft.pdf , 2005.

[45] M. S. Lund, B. Solhaug, and K. Stølen, Model-driven risk analysis: the
CORAS approach. Springer Science & Business Media, 2010.

[46] K. Shortridge, “Deciduous: A security decision tree generator,” https:
//kellyshortridge.com/blog/posts/deciduous-attack-tree-app/, Jul. 2021.

[47] A. Schaad and M. Borozdin, “TAM2: Automated threat analysis,” in
Proceedings of the 27th Annual ACM Symposium on Applied Computing,
2012, pp. 1103–1108.

[48] J. Von Der Assen, M. F. Franco, C. Killer, E. J. Scheid, and
B. Stiller, “CoReTM: An Approach Enabling Cross-Functional Collab-
orative Threat Modeling,” in IEEE International Conference on Cyber
Security and Resilience (CSR), 2022, pp. 189–196.

[49] A. Schaad and T. Reski, “Open Weakness and Vulnerability Modeler
(OVVL)–An Updated Approach to Threat Modeling,” in Proceedings of
the 16th International Joint Conference on e-Business and Telecommu-
nications (SECRYPT), vol. 2, 2019, pp. 417–424.

[50] M. Rusakovich, “TicTaaC: Threat modeling-as-a-Code (TaaC),” https:
//github.com/rusakovichma/TicTaaC, May 2024.

[51] S. Walraven, D. Van Landuyt, F. Gey, and W. Joosen, “Service line engi-
neering in practice: Developing an integrated document processing saas
application,” CW Reports CW652, Department of Computer Science, KU
Leuven, 2014.

[52] L. Sion, D. Van Landuyt, and W. Joosen, “An overview of runtime data
protection enforcement approaches,” in 2021 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE, 2021, pp.
351–358.

[53] F. Gey, S. Walraven, D. Van Landuyt, and W. Joosen, “Building a cus-
tomizable business-process-as-a-service application with current state-
of-practice,” in Software Composition: 12th International Conference,
SC 2013, Budapest, Hungary, June 19, 2013. Proceedings 12. Springer,
2013, pp. 113–127.

[54] M. Decat, J. Bogaerts, B. Lagaisse, and W. Joosen, “The e-document
case study: functional analysis and access control requirements,” CW
Reports CW654, Department of Computer Science, KU Leuven, 2014.

https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.threatdragon.com/
https://www.threatdragon.com/
https://cairis.readthedocs.io/en/latest/gettingstarted.html
https://cairis.readthedocs.io/en/latest/gettingstarted.html
https://threatsmanager.com/
https://github.com/threatspec/threatspec_example_report
https://github.com/threatspec/threatspec_example_report
https://github.com/izar/pytm
https://github.com/izar/pytm
https://github.com/Threagile/threagile
https://github.com/Threagile/threagile
http://dymaxion.org/trike/Trike_v1_Methodology_Documentdraft.pdf
http://dymaxion.org/trike/Trike_v1_Methodology_Documentdraft.pdf
https://kellyshortridge.com/blog/posts/deciduous-attack-tree-app/
https://kellyshortridge.com/blog/posts/deciduous-attack-tree-app/
https://github.com/rusakovichma/TicTaaC
https://github.com/rusakovichma/TicTaaC

	Introduction
	Background and motivation
	Related work
	Study design
	Research questions
	RQ1. Degree of automation
	RQ2. Customization of knowledge resources
	RQ3. Integration-readiness

	GQM tree and evaluation criteria
	Degree of automation (RQ1)
	Customization of knowledge resources (RQ2)
	Integration-readiness (RQ3)

	Tool selection
	Evaluation approach

	Results
	RQ1. Threat modeling automation
	RQ2. Customization of knowledge resources
	RQ3. Integration-readiness

	Discussion
	Threats to Validity
	Expressiveness and exhaustiveness
	Interoperability of threat modeling data

	Conclusion
	References

